Method

HNASNet [HNASNet]
[Anonymous Submission]

Submitted on 22 Feb. 2025 22:15 by
[Anonymous Submission]

Running time:0.0198 s
Environment:GPU @ A100

Method Description:
Feature fusion is the critical component in the
depth completion task. Current approaches mainly
utilize manually designed fusion modules to
construct depth completion networks, but they
generally face the following two problems: 1. The
feature fusion modules at different resolutions
are invariant, requiring the modules to have
multi-scale generalization. 2. The modules
themselves are complex, and additional branches
are needed to enhance features and for post-
processing optimization. Repeated modules and
additional branches lead to network redundancy and
increased computational costs. To address these
challenges, we design a depth completion network
based on neural architecture search. We define the
search space based on cells and employ machine
learning to search for different network
structures at each resolution to construct feature
fusion modules. Meanwhile, we optimize the complex
pruning process in Hierarchical Neural
Architecture Search (HNAS) by defining distinct
cell units to
Parameters:
33.4M
Latex Bibtex:

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Sparsity Invariant CNNs (THREEDV 2017), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Sparsity Invariant CNNs (THREEDV 2017), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

iRMSE iMAE RMSE MAE
Error 2.14 0.94 707.84 207.31
This table as LaTeX

Test Image 0

iRMSE iMAE RMSE MAE
Error 3.08 0.76 757.22 171.27
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

iRMSE iMAE RMSE MAE
Error 2.57 0.86 672.92 82.70
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

iRMSE iMAE RMSE MAE
Error 1.89 1.32 1096.51 398.60
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

iRMSE iMAE RMSE MAE
Error 3.04 1.57 608.83 235.20
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

iRMSE iMAE RMSE MAE
Error 2.89 1.50 527.49 218.37
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

iRMSE iMAE RMSE MAE
Error 3.61 0.97 790.56 164.17
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

iRMSE iMAE RMSE MAE
Error 5.68 1.42 676.58 173.41
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

iRMSE iMAE RMSE MAE
Error 3.71 1.33 755.14 174.07
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

iRMSE iMAE RMSE MAE
Error 1.93 0.71 737.81 160.69
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

iRMSE iMAE RMSE MAE
Error 1.89 1.07 738.63 216.83
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

iRMSE iMAE RMSE MAE
Error 1.78 1.27 738.52 387.34
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

iRMSE iMAE RMSE MAE
Error 2.31 1.08 1179.76 391.21
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

iRMSE iMAE RMSE MAE
Error 4.16 1.77 966.02 249.75
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

iRMSE iMAE RMSE MAE
Error 1.20 0.75 660.94 187.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

iRMSE iMAE RMSE MAE
Error 1.65 0.81 554.46 141.09
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

iRMSE iMAE RMSE MAE
Error 3.79 1.36 485.24 164.13
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

iRMSE iMAE RMSE MAE
Error 1.22 0.66 559.32 171.06
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

iRMSE iMAE RMSE MAE
Error 1.36 0.68 577.14 171.03
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

iRMSE iMAE RMSE MAE
Error 1.73 0.91 623.95 252.09
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

iRMSE iMAE RMSE MAE
Error 1.05 0.75 639.85 208.13
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker