Method

ScaffFusion [ScaffFusion]
https://github.com/alexklwong/learning-topology-synthetic-data

Submitted on 6 Jun. 2021 02:57 by
Safa Cicek (UCLA)

Running time:0.03 s
Environment:1 core @ 1.5 Ghz (Python)

Method Description:
We present a method for inferring dense depth maps
from images and sparse depth measurements by
leveraging synthetic data to learn the association
of sparse point clouds with dense natural shapes,
and using the image as evidence to validate the
predicted depth map. Our learned prior for natural
shapes uses only sparse depth as input, not
images, so the method is not affected by the
covariate shift when attempting to transfer
learned models from synthetic data to real ones.
This allows us to use abundant synthetic data with
ground truth to learn the most difficult component
of the reconstruction process, which is topology
estimation, and use the image to refine the
prediction based on photometric evidence. Our
approach uses fewer parameters than previous
methods, yet, achieves the state of the art on
both indoor and outdoor benchmark datasets.
Parameters:
w_{ph}=1.00, w_{co}=0.20 w_{st}=0.40, w_{sz}=0.10,
w_{sm}=0.01 and w_{tp}=0.10
Latex Bibtex:
@article{wong2021learning,
title={Learning topology from synthetic data for
unsupervised depth completion},
author={Wong, Alex and Cicek, Safa and Soatto,
Stefano},
journal={IEEE Robotics and Automation Letters},
volume={6},
number={2},
pages={1495--1502},
year={2021},
publisher={IEEE}
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Sparsity Invariant CNNs (THREEDV 2017), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Sparsity Invariant CNNs (THREEDV 2017), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

iRMSE iMAE RMSE MAE
Error 3.32 1.17 1121.89 282.86
This table as LaTeX

Test Image 0

iRMSE iMAE RMSE MAE
Error 3.93 1.03 1279.61 257.08
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

iRMSE iMAE RMSE MAE
Error 4.21 1.13 1252.13 141.56
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

iRMSE iMAE RMSE MAE
Error 2.59 1.64 1949.62 564.50
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

iRMSE iMAE RMSE MAE
Error 3.92 1.76 832.22 283.52
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

iRMSE iMAE RMSE MAE
Error 3.77 1.71 624.04 244.70
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

iRMSE iMAE RMSE MAE
Error 4.73 1.26 1031.04 237.41
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

iRMSE iMAE RMSE MAE
Error 12.08 2.16 1591.37 287.53
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

iRMSE iMAE RMSE MAE
Error 5.67 1.63 1660.98 251.12
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

iRMSE iMAE RMSE MAE
Error 2.92 0.96 1048.72 231.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

iRMSE iMAE RMSE MAE
Error 2.38 1.26 1118.92 300.96
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

iRMSE iMAE RMSE MAE
Error 2.02 1.38 1023.40 454.17
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

iRMSE iMAE RMSE MAE
Error 3.64 1.39 1868.55 547.53
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

iRMSE iMAE RMSE MAE
Error 8.63 2.51 1209.37 351.11
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

iRMSE iMAE RMSE MAE
Error 1.48 0.92 879.38 242.92
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

iRMSE iMAE RMSE MAE
Error 4.35 1.16 845.38 198.30
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

iRMSE iMAE RMSE MAE
Error 5.02 1.66 707.61 215.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

iRMSE iMAE RMSE MAE
Error 1.79 0.80 754.58 214.43
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

iRMSE iMAE RMSE MAE
Error 1.97 0.87 853.92 230.49
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

iRMSE iMAE RMSE MAE
Error 2.66 1.11 960.25 320.54
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

iRMSE iMAE RMSE MAE
Error 1.58 0.98 1146.64 300.67
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker