Method

Learnable Differencing Center for Nighttime Depth Perception [LDCNet]
https://github.com/yanzq95/LDCNet

Submitted on 16 Jun. 2023 14:06 by
Yan zhiqiang (NJUST)

Running time:0.05 s
Environment:GPU @ 2.5 Ghz (Python)

Method Description:
Depth completion is the task of recovering dense
depth maps from sparse ones, usually with the help
of color images. Existing image-guided methods
perform well on daytime depth perception self-
driving benchmarks, but struggle in nighttime
scenarios with poor visibility and complex
illumination. To address these challenges, we
propose a simple yet effective framework called
LDCNet. Our key idea is to use Recurrent Inter-
Convolution Differencing (RICD) and Illumination-
Affinitive Intra-Convolution Differencing (IAICD)
to
enhance the nighttime color images and reduce the
negative effects of the varying illumination,
respectively.
Parameters:
N/A
Latex Bibtex:
@misc{yan2023learnable,
title={Learnable Differencing Center for
Nighttime Depth Perception},
author={Yan, Zhiqiang and Zheng, Yupeng and Li,
Chongyi and Li, Jun and Yang, Jian},
year={2023},
eprint={2306.14538},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Sparsity Invariant CNNs (THREEDV 2017), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Sparsity Invariant CNNs (THREEDV 2017), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

iRMSE iMAE RMSE MAE
Error 2.33 0.98 753.15 218.02
This table as LaTeX

Test Image 0

iRMSE iMAE RMSE MAE
Error 4.17 0.81 878.41 177.39
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

iRMSE iMAE RMSE MAE
Error 2.61 0.88 718.28 93.39
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

iRMSE iMAE RMSE MAE
Error 2.09 1.40 1202.91 417.36
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

iRMSE iMAE RMSE MAE
Error 3.59 1.74 647.63 252.88
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

iRMSE iMAE RMSE MAE
Error 2.98 1.53 586.90 226.82
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

iRMSE iMAE RMSE MAE
Error 4.06 1.03 854.81 177.49
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

iRMSE iMAE RMSE MAE
Error 6.81 1.52 929.82 191.37
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

iRMSE iMAE RMSE MAE
Error 4.02 1.36 667.72 178.04
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

iRMSE iMAE RMSE MAE
Error 2.20 0.69 759.07 166.23
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

iRMSE iMAE RMSE MAE
Error 1.99 1.12 730.49 225.46
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

iRMSE iMAE RMSE MAE
Error 1.84 1.31 749.38 389.36
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

iRMSE iMAE RMSE MAE
Error 2.47 1.11 1191.55 398.57
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

iRMSE iMAE RMSE MAE
Error 4.19 1.74 954.15 257.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

iRMSE iMAE RMSE MAE
Error 1.25 0.78 687.57 189.46
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

iRMSE iMAE RMSE MAE
Error 2.07 0.94 590.18 156.16
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

iRMSE iMAE RMSE MAE
Error 4.00 1.50 499.19 175.02
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

iRMSE iMAE RMSE MAE
Error 1.29 0.73 561.62 177.47
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

iRMSE iMAE RMSE MAE
Error 1.50 0.69 609.44 175.78
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

iRMSE iMAE RMSE MAE
Error 1.76 0.83 669.99 255.22
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

iRMSE iMAE RMSE MAE
Error 1.13 0.82 706.23 222.01
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker