Method

Semantically Guided Depth Upsampling [mono] [SGDU]


Submitted on 19 Dec. 2017 17:18 by
Nick Schneider (Daimler AG)

Running time:0.2 s
Environment:4 cores @ 2.5 Ghz (C/C++)

Method Description:
Our approach goes beyond the use of intensity cues only and additionally exploits object boundary cues through structured edge detection and semantic scene labeling for guidance. Both cues are combined within a geodesic distance measure that allows for boundary-preserving depth interpolation while utilizing local context. We model the observed scene structure by locally planar elements and formulate the upsampling task as a global energy minimization problem.
Parameters:
coming soon.
Latex Bibtex:
@inproceedings{schneider2016semantically,
title={Semantically Guided Depth Upsampling},
author={Schneider, Nick and Schneider, Lukas and Pinggera, Peter and Franke, Uwe and Pollefeys, Marc and Stiller, Christoph},
booktitle={German Conference on Pattern Recognition},
pages={37--48},
year={2016},
organization={Springer}
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Sparsity Invariant CNNs (THREEDV 2017), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Sparsity Invariant CNNs (THREEDV 2017), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

iRMSE iMAE RMSE MAE
Error 7.38 2.05 2312.57 605.47
This table as LaTeX

Test Image 0

iRMSE iMAE RMSE MAE
Error 8.81 2.23 2830.03 679.53
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

iRMSE iMAE RMSE MAE
Error 9.94 2.49 2730.20 444.40
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

iRMSE iMAE RMSE MAE
Error 3.85 2.29 3275.14 1103.51
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

iRMSE iMAE RMSE MAE
Error 8.73 3.11 2131.03 585.52
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

iRMSE iMAE RMSE MAE
Error 7.90 2.79 1927.52 543.47
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

iRMSE iMAE RMSE MAE
Error 9.53 2.52 2999.95 688.14
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

iRMSE iMAE RMSE MAE
Error 22.41 4.66 3810.74 779.77
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

iRMSE iMAE RMSE MAE
Error 8.27 2.15 1611.56 325.82
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

iRMSE iMAE RMSE MAE
Error 9.68 2.10 2560.77 653.21
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

iRMSE iMAE RMSE MAE
Error 4.43 1.80 2080.56 519.87
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

iRMSE iMAE RMSE MAE
Error 13.50 1.68 1909.93 664.81
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

iRMSE iMAE RMSE MAE
Error 7.24 2.55 4002.37 1244.66
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

iRMSE iMAE RMSE MAE
Error 27.92 8.88 4723.66 1517.03
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

iRMSE iMAE RMSE MAE
Error 2.63 1.27 2228.59 469.11
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

iRMSE iMAE RMSE MAE
Error 10.41 2.62 1788.93 487.93
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

iRMSE iMAE RMSE MAE
Error 7.55 2.71 1486.91 490.19
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

iRMSE iMAE RMSE MAE
Error 3.99 1.46 1549.25 456.16
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

iRMSE iMAE RMSE MAE
Error 3.71 1.39 2001.41 510.43
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

iRMSE iMAE RMSE MAE
Error 5.65 1.83 2771.28 740.97
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

iRMSE iMAE RMSE MAE
Error 2.55 1.37 2454.41 600.61
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker