Method
Setting
Code
D1-bg
D1-fg
D1-all
Density
Runtime
Environment
1
MonSter
1.13 %
2.81 %
1.41 %
100.00 %
0.45 s
1 core @ 2.5 Ghz (Python)
2
DEFOM-Stereo
1.25 %
2.23 %
1.41 %
100.00 %
0.30s
1 core @ 2.5 Ghz (Python)
3
StereoBase
code
1.28 %
2.26 %
1.44 %
100.00 %
0.29 s
GPU @ 1.5 Ghz (Python)
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023.
4
NMRF-Stereo-SwinT
code
1.20 %
2.67 %
1.45 %
100.00 %
0.11 s
NVIDIA RTX 3090 (PyTorch)
5
TC-Stereo
code
1.29 %
2.33 %
1.46 %
100.00 %
0.09 s
NVIDIA RTX 3090 (Pytorch)
J. Zeng, C. Yao, Y. Wu and Y. Jia: Temporally Consistent Stereo Matching . European conference on computer
vision 2024.
6
PointerStereo
1.31 %
2.25 %
1.46 %
100.00 %
0.3 s
1 core @ 2.5 Ghz (C/C++)
7
UniTT-Stereo
1.27 %
2.45 %
1.47 %
100.00 %
0.46 s
1 core @ 2.5 Ghz (Python)
8
IMC-Stereo
1.33 %
2.26 %
1.48 %
100.00 %
0.48 s
1 core @ 2.5 Ghz (C/C++)
9
FF IGEV
1.29 %
2.52 %
1.49 %
100.00 %
0.37 s
GPU @ 2.5 Ghz (Python)
10
ST Selective-IGEV
1.30 %
2.48 %
1.50 %
100.00 %
0.24 s
GPU @ 2.5 Ghz (Python)
11
ViTAStereo
code
1.21 %
2.99 %
1.50 %
100.00 %
0.22 s
NVIDIA RTX 4090 (PyTorch)
C. Liu, Q. Chen and R. Fan: Playing to Vision Foundation Model's
Strengths in Stereo Matching . IEEE Transactions on Intelligent
Vehicles 2024.
12
UGIA-Selective
1.30 %
2.57 %
1.51 %
100.00 %
0.15 s
1 core @ 2.5 Ghz (C/C++)
13
GIP-Stereo
1.27 %
2.73 %
1.51 %
100.00 %
0.39 s
1 core @ 2.5 Ghz (C/C++)
14
IGEV++
code
1.31 %
2.54 %
1.51 %
100.00 %
0.28 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang: IGEV++: Iterative Multi-range Geometry
Encoding Volumes for Stereo Matching . arXiv preprint arXiv:2409.00638 2024.
15
AEACV
1.35 %
2.38 %
1.52 %
100.00 %
0.61 s
1 core @ 2.5 Ghz (Python)
16
WCG-NET
1.35 %
2.37 %
1.52 %
100.00 %
0.2 s
1 core @ 2.5 Ghz (Python)
17
MoCha-V2
code
1.35 %
2.40 %
1.52 %
100.00 %
0.33 s
NVIDIA Tesla A100 (Pytorch)
Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Zhao and C. Chen: Motif Channel Opened in a White-Box:
Stereo Matching via Motif Correlation Graph . arXiv preprint arXiv:2411.12426 2024.
18
PANet
1.32 %
2.58 %
1.53 %
100.00 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
19
MoCha-Stereo
code
1.36 %
2.43 %
1.53 %
100.00 %
0.34 s
NVIDIA Tesla A6000 (PyTorch)
Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu: MoCha-Stereo: Motif Channel Attention
Network for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
20
MR_Igev
1.35 %
2.49 %
1.54 %
100.00 %
0.5 s
A800
21
BiPFF
code
1.34 %
2.57 %
1.54 %
100.00 %
0.20 s
1 core @ 2.5 Ghz (C/C++)
22
DiffuVolume
1.35 %
2.51 %
1.54 %
100.00 %
0.36 s
GPU @ 2.5 Ghz (Python)
D. Zheng, X. Wu, Z. Liu, J. Meng and W. Zheng: DiffuVolume: Diffusion Model for Volume
based Stereo Matching . arXiv preprint arXiv:2308.15989 2023.
23
GANet+ADL
code
1.38 %
2.38 %
1.55 %
100.00 %
0.67s
NVIDIA RTX 3090 (PyTorch)
P. Xu, Z. Xiang, C. Qiao, J. Fu and T. Pu: Adaptive Multi-Modal Cross-Entropy Loss for
Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
24
Selective-IGEV
code
1.33 %
2.61 %
1.55 %
100.00 %
0.24 s
1 core @ 2.5 Ghz (Python)
X. Wang, G. Xu, H. Jia and X. Yang: Selective-Stereo: Adaptive Frequency
Information Selection for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
25
MIF-Stereo
1.36 %
2.51 %
1.55 %
100.00 %
0.46 s
NVIDIA Tesla A100 (PyTorch)
26
MC-Stereo
code
1.36 %
2.51 %
1.55 %
100.00 %
0.40 s
GPU @ 2.5 Ghz (Python)
M. Feng, J. Cheng, H. Jia, L. Liu, G. Xu and X. Yang: MC-Stereo: Multi-peak Lookup and Cascade
Search Range for Stereo Matching . International Conference on 3D Vision
(3DV) 2024.
27
SR Stereo_32_update
1.37 %
2.49 %
1.56 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (C/C++)
W. Xiao and W. Zhao: Stepwise Regression and Pre-trained Edge for
Robust Stereo Matching . arXiv preprint arXiv:2406.06953 2024.
28
DR Stereo
1.37 %
2.50 %
1.56 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (Python)
29
UGIA-IGEV
1.38 %
2.47 %
1.56 %
100.00 %
0.15 s
1 core @ 2.5 Ghz (C/C++)
30
IGEVStereo-DCA
1.40 %
2.39 %
1.57 %
100.00 %
0.3 s
1 core @ 2.5 Ghz (C/C++)
31
HART
1.39 %
2.49 %
1.57 %
100.00 %
0.25 s
NVIDIA Tesla A100 (PyTorch)
Anonymous: HART . 2024.
32
MaDis-Stereo
1.42 %
2.31 %
1.57 %
100.00 %
0.94 s
NVIDIA Tesla A100 (PyTorch)
33
DMIO
1.34 %
2.74 %
1.57 %
100.00 %
0.3 s
1 core @ 2.5 Ghz (Python)
Y. Shi: Rethinking Iterative Stereo Matching from
Diffusion Bridge Model Perspective . arXiv preprint arXiv:2404.09051 2024.
34
NMRF-Stereo
code
1.28 %
3.07 %
1.57 %
100.00 %
0.09 s
NVIDIA RTX 3090 (PyTorch)
T. Guan, C. Wang and Y. Liu: Neural Markov Random Field for Stereo Matching . Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition 2024.
35
SPRNet
code
1.43 %
2.32 %
1.58 %
100.00 %
3 s
1 core @ 2.5 Ghz (C/C++)
36
Mono2Stereo (IGEV)
1.36 %
2.67 %
1.58 %
100.00 %
0.01 s
1 core @ 2.5 Ghz (Python)
37
testnet
1.38 %
2.59 %
1.58 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (C/C++)
38
fds
1.37 %
2.66 %
1.58 %
100.00 %
0.3 s
1 core @ 2.5 Ghz (C/C++)
39
igev_refine
1.36 %
2.68 %
1.58 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (Python)
40
bflnet
1.37 %
2.68 %
1.58 %
100.00 %
0.27 s
NVIDIA RTX 3090 (PyTorch)
41
SG-IGEV
code
1.40 %
2.50 %
1.58 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo
matching . 2024.
42
OpenStereo-IGEV
code
1.44 %
2.31 %
1.59 %
100.00 %
0.18 s
NVIDIA-3090
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023.
43
ICGNet-abl
1.38 %
2.64 %
1.59 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (C/C++)
44
MA-Stereo
1.38 %
2.66 %
1.59 %
100.00 %
0.06 s
GPU @ 2.5 Ghz (Python)
45
CroCo-Stereo
code
1.38 %
2.65 %
1.59 %
100.00 %
0.93s
NVIDIA A100
P. Weinzaepfel, T. Lucas, V. Leroy, Y. Cabon, V. Arora, R. Br\'egier, G. Csurka, L. Antsfeld, B. Chidlovskii and J. Revaud: CroCo v2: Improved Cross-view Completion
Pre-training for Stereo Matching and Optical Flow . ICCV 2023.
46
IGEV-Stereo
code
1.38 %
2.67 %
1.59 %
100.00 %
0.18 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for
Stereo Matching . CVPR 2023.
47
DN+ACVNet
1.32 %
2.95 %
1.60 %
100.00 %
0.24 s
1 core @ 2.5 Ghz (C/C++)
J. Zhang, L. Huang, X. Bai, J. Zheng, L. Gu and E. Hancock: Exploring the Usage of Pre-trained
Features for Stereo Matching . International Journal of Computer
Vision 2024.
48
AMSCF-Net
1.32 %
2.98 %
1.60 %
100.00 %
0.3 s
GPU @ 2.5 Ghz (Python)
49
SR-Stereo_step15_par
1.36 %
2.79 %
1.60 %
100.00 %
0.10 s
1 core @ 2.5 Ghz (C/C++)
50
EGLCR-Stereo
1.38 %
2.71 %
1.60 %
100.00 %
0.45 s
1 core @ 2.5 Ghz (C/C++)
51
RetinaStereo
1.44 %
2.43 %
1.61 %
100.00 %
0.25 s
1 core @ 2.5 Ghz (Python)
52
TEEV_
1.44 %
2.46 %
1.61 %
100.00 %
0.44 s
1 core @ 2.5 Ghz (C/C++)
53
ACVNet-DCA
1.41 %
2.61 %
1.61 %
100.00 %
0.2 s
1 core @ 2.5 Ghz (Python)
54
MVACVNet
1.33 %
3.09 %
1.62 %
100.00 %
0.01 s
GPU @ 2.5 Ghz (Python)
55
UPFNet
1.38 %
2.85 %
1.62 %
100.00 %
0.25 s
1 core @ 2.5 Ghz (C/C++)
Q. Chen, B. Ge and J. Quan: Unambiguous Pyramid Cost Volumes Fusion
for Stereo Matching . IEEE Transactions on Circuits and
Systems for Video Technology 2023.
56
IGEV_MR
1.42 %
2.66 %
1.63 %
100.00 %
0.3 s
GPU @ 2.5 Ghz (Python)
57
RAFT-SFFRU
1.42 %
2.65 %
1.63 %
100.00 %
0.4 s
1 core @ 2.5 Ghz (C/C++)
58
Selective-RAFT
code
1.41 %
2.71 %
1.63 %
100.00 %
0.45 s
1 core @ 2.5 Ghz (Python)
X. Wang, G. Xu, H. Jia and X. Yang: Selective-Stereo: Adaptive Frequency
Information Selection for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
59
GeoNet
1.40 %
2.80 %
1.63 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (C/C++)
60
IGEVStereo-DU
1.43 %
2.68 %
1.64 %
100.00 %
0.08 s
1 core @ 2.5 Ghz (C/C++)
61
ADBM
1.45 %
2.61 %
1.64 %
100.00 %
0.4 s
1 core @ 2.5 Ghz (Python)
62
Stereo+
1.33 %
3.24 %
1.65 %
100.00 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
63
raft-y
1.44 %
2.67 %
1.65 %
100.00 %
0.07 s
1 core @ 2.5 Ghz (C/C++)
64
M-FUSE
code
1.40 %
2.91 %
1.65 %
100.00 %
1.3 s
GPU
L. Mehl, A. Jahedi, J. Schmalfuss and A. Bruhn: M-FUSE: Multi-frame Fusion for Scene Flow Estimation . Proc. Winter Conference on Applications of Computer Vision (WACV) 2023.
65
SF2SE3
code
1.40 %
2.91 %
1.65 %
100.00 %
2.7 s
GPU @ >3.5 Ghz (Python)
L. Sommer, P. Schröppel and T. Brox: SF2SE3: Clustering Scene Flow into SE (3)-Motions via Proposal and Selection . DAGM German Conference on Pattern Recognition 2022.
66
LEAStereo
code
1.40 %
2.91 %
1.65 %
100.00 %
0.30 s
GPU @ 2.5 Ghz (Python)
X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Neural Architecture Search
for Deep Stereo Matching . Advances in Neural Information
Processing Systems 2020.
67
LoS
1.42 %
2.81 %
1.65 %
100.00 %
0.19 s
1 core @ 2.5 Ghz (Python)
K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo: LoS: Local Structure Guided Stereo
Matching . Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) 2024.
68
ACVNet
code
1.37 %
3.07 %
1.65 %
100.00 %
0.2 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Volume for
Accurate and Efficient Stereo Matching . CVPR 2022.
69
Toi Depth
1.35 %
3.20 %
1.65 %
100.00 %
1 s
8 cores @ 3.5 Ghz (Python)
70
croco
1.40 %
2.97 %
1.66 %
100.00 %
0.93 s
1 core @ 2.5 Ghz (Python)
71
MPFV-Stereo
1.50 %
2.44 %
1.66 %
100.00 %
0.23 s
1 core @ 2.5 Ghz (C/C++)
72
sam
1.48 %
2.57 %
1.66 %
100.00 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
73
PCWNet
code
1.37 %
3.16 %
1.67 %
100.00 %
0.44 s
1 core @ 2.5 Ghz (C/C++)
Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang: PCW-Net: Pyramid Combination and Warping
Cost Volume for Stereo Matching . European Conference on Computer
Vision(ECCV) 2022.
74
PCMAnet
1.42 %
2.92 %
1.67 %
100.00 %
0.27 s
1 core @ 2.5 Ghz (C/C++)
75
LaC+GANet
code
1.44 %
2.83 %
1.67 %
100.00 %
1.8 s
GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on
Artificial Intelligence 2022.
76
Sn-stereo
1.44 %
2.87 %
1.68 %
100.00 %
0.35 s
1 core @ 2.5 Ghz (Python)
77
CREStereo
code
1.45 %
2.86 %
1.69 %
100.00 %
0.41 s
GPU @ >3.5 Ghz (Python)
J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu: Practical Stereo Matching via
Cascaded Recurrent Network with Adaptive
Correlation . 2022.
78
ESM_Net
1.37 %
3.30 %
1.69 %
100.00 %
0.03 s
1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
79
PCWNet-SCE
1.39 %
3.23 %
1.69 %
100.00 %
0.44 s
1 core @ 2.5 Ghz (C/C++)
80
DuMa-Net
1.40 %
3.18 %
1.70 %
100.00 %
0.38 s
PyTorch GPU
S. Sun, R. liu and S. Sun: Range-free disparity estimation with self-
adaptive dual-matching . IET Computer Vision .
81
samstereo
1.52 %
2.59 %
1.70 %
100.00 %
0.44 s
1 core @ 2.5 Ghz (C/C++)
82
Wpa
1.52 %
2.68 %
1.71 %
100.00 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
83
AEACV (RAFT-based)
1.52 %
2.72 %
1.72 %
100.00 %
0.41 s
1 core @ 2.5 Ghz (C/C++)
84
DKT-IGEV
1.46 %
3.05 %
1.72 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (C/C++)
J. Zhang, J. Li, L. Huang, X. Yu, L. Gu, J. Zheng and X. Bai: Robust Synthetic-to-Real Transfer for
Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
85
GINet+ANE filter
1.45 %
3.07 %
1.72 %
100.00 %
0.11 s
4 cores @ 2.5 Ghz (Python)
86
ls
1.53 %
2.69 %
1.72 %
100.00 %
0.32 s
1 core @ 2.5 Ghz (C/C++)
87
GPDF-Net
1.41 %
3.33 %
1.73 %
100.00 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
88
SMoEStereo_RVC
1.50 %
2.88 %
1.73 %
100.00 %
0.19 s
GPU @ 2.5 Ghz (Python)
89
Patchmatch Stereo++
code
1.55 %
2.71 %
1.74 %
100.00 %
0.2 s
W. Ren, Q. Liao, Z. Shao, X. Lin, X. Yue, Y. Zhang and Z. Lu: Patchmatch Stereo++: Patchmatch Binocular
Stereo with Continuous Disparity Optimization . Proceedings of the 31st ACM
International Conference on Multimedia 2023.
90
CSPN
1.51 %
2.88 %
1.74 %
100.00 %
1.0 s
GPU @ 2.5 Ghz (Python)
X. Cheng, P. Wang and R. Yang: Learning Depth with Convolutional Spatial
Propagation Network . IEEE Transactions on Pattern Analysis
and Machine Intelligence(T-PAMI) 2019.
91
4D-IteraStereo
1.60 %
2.48 %
1.75 %
100.00 %
0.4 s
GPU @ 2.5 Ghz (Python)
92
TEEV1
1.52 %
2.98 %
1.76 %
100.00 %
0.32 s
2 cores @ 2.5 Ghz (Python)
93
LaC+GwcNet
code
1.43 %
3.44 %
1.77 %
100.00 %
0. 65 s
GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on
Artificial Intelligence 2022.
94
GMStereo
code
1.49 %
3.14 %
1.77 %
100.00 %
0.17 s
GPU (Python)
H. Xu, J. Zhang, J. Cai, H. Rezatofighi, F. Yu, D. Tao and A. Geiger: Unifying Flow, Stereo and Depth
Estimation . arXiv preprint arXiv:2211.05783 2022.
95
NLCA-Net v2
code
1.41 %
3.56 %
1.77 %
100.00 %
0.67 s
GPU @ >3.5 Ghz (Python)
Z. Rao, D. Yuchao, S. Zhelun and H. Renjie: Rethinking Training Strategy in
Stereo Matching . IEEE TRANSACTIONS ON NEURAL
NETWORKS AND LEARNING SYSTEMS .
96
GHUStereo-4-nce
1.48 %
3.21 %
1.77 %
100.00 %
0.034 s
RTX 4070 (PyTorch)
97
GANet+DSMNet
1.48 %
3.23 %
1.77 %
100.00 %
2.0 s
GPU @ 2.5 Ghz (C/C++)
F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr: Domain-invariant Stereo Matching
Networks . Europe Conference on Computer Vision
(ECCV) 2020.
98
ClearDepth
1.58 %
2.74 %
1.77 %
100.00 %
0.47 s
GPU @ 2.5 Ghz (Python)
99
IVF-Astereo
1.62 %
2.56 %
1.78 %
100.00 %
0.15 s
GPU @ 3.0 Ghz (Python)
100
PFSMNet
code
1.54 %
3.02 %
1.79 %
100.00 %
0.31 s
1 core @ 2.5 Ghz (C/C++)
K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang: Deep Progressive Fusion Stereo Network . IEEE Transactions on Intelligent
Transportation Systems 2021.
101
FSCN
1.57 %
2.91 %
1.79 %
100.00 %
0.05 s
1 core @ 2.5 Ghz (Python)
102
RT-IGEV++
code
1.48 %
3.37 %
1.79 %
100.00 %
0.05 s
1 core @ 2.5 Ghz (Python)
G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang: IGEV++: Iterative Multi-range Geometry
Encoding Volumes for Stereo Matching . arXiv preprint arXiv:2409.00638 2024.
103
SUW-Stereo
1.47 %
3.45 %
1.80 %
100.00 %
1.8 s
1 core @ 2.5 Ghz (C/C++)
H. Ren, A. Raj, M. El-Khamy and J. Lee: SUW-Learn: Joint Supervised,
Unsupervised, Weakly Supervised Deep Learning for
Monocular Depth Estimation . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition Workshops 2020.
104
FGDS-Net
1.47 %
3.53 %
1.81 %
100.00 %
0.3 s
1 core @ 2.5 Ghz (Python)
105
TemporalStereo
code
1.61 %
2.78 %
1.81 %
100.00 %
0.04 s
1 core @ 2.5 Ghz (Python)
Y. Zhang, M. Poggi and S. Mattoccia: TemporalStereo: Efficient
Spatial-Temporal Stereo Matching Network . IROS 2023.
106
Binary TTC
1.48 %
3.46 %
1.81 %
100.00 %
2 s
GPU @ 1.0 Ghz (Python)
A. Badki, O. Gallo, J. Kautz and P. Sen: Binary TTC: A Temporal Geofence for Autonomous
Navigation . The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2021.
107
ScaleRAFT
code
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
108
MonoFusion
1.48 %
3.46 %
1.81 %
100.00 %
0.7 s
GPU @ 2.5 Ghz (Python)
109
ISDAFlow
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
GPU @ 2.5 Ghz (Python)
110
FP-TTC
1.48 %
3.46 %
1.81 %
100.00 %
0.15 s
1 core @ 2.5 Ghz (C/C++)
111
ScaleFlow++RBO
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
GPU @ 2.5 Ghz (Python)
112
ScaleFlow++_SAG
1.48 %
3.46 %
1.81 %
100.00 %
0.05 s
GPU @ 2.5 Ghz (Python + C/C++)
113
CamLiRAFT
code
1.48 %
3.46 %
1.81 %
100.00 %
1 s
GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang: Learning Optical Flow and Scene Flow
with Bidirectional Camera-LiDAR Fusion . TPAMI 2023.
114
GAOSF
1.48 %
3.46 %
1.81 %
100.00 %
1 s
GPU @ 2.5 Ghz (Python + C/C++)
115
GS58_ScaleRES
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
GPU @ 2.5 Ghz (Python + C/C++)
116
Scale-flow
code
1.48 %
3.46 %
1.81 %
100.00 %
0.8 s
GPU @ 2.5 Ghz (Python)
H. Ling, Q. Sun, Z. Ren, Y. Liu, H. Wang and Z. Wang: Scale-flow: Estimating 3D Motion from
Video . Proceedings of the 30th ACM
International Conference on Multimedia 2022.
117
RAFT-3D++
1.48 %
3.46 %
1.81 %
100.00 %
0.5 s
1 core @ 2.5 Ghz (Python)
118
ScaleFlow++
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
GPU @ 2.5 Ghz (Python)
119
GS_ScaleFlow
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
GPU @ 2.5 Ghz (Python)
120
ScaleRAFTRBO
code
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
121
CamLiRAFT-NR
code
1.48 %
3.46 %
1.81 %
100.00 %
1 s
GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang: Learning Optical Flow and Scene Flow
with Bidirectional Camera-LiDAR Fusion . arXiv preprint arXiv:2303.12017 2023.
122
RAFT-3D
1.48 %
3.46 %
1.81 %
100.00 %
2 s
GPU @ 2.5 Ghz (Python + C/C++)
Z. Teed and J. Deng: RAFT-3D: Scene Flow using Rigid-Motion
Embeddings . arXiv preprint arXiv:2012.00726 2020.
123
OAMaskFlow
1.48 %
3.46 %
1.81 %
100.00 %
0.5 s
1 core @ 2.5 Ghz (Python)
124
ADFactory
code
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
GPU @ 2.5 Ghz (Python + C/C++)
H. Ling, Q. Sun, Y. Sun, X. Xu and X. Li: ADFactory: An Effective Framework for
Generalizing Optical Flow with NeRF . Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition 2024.
125
GS58_Scale
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
1 core @ 2.5 Ghz (Python)
126
GANet-deep
code
1.48 %
3.46 %
1.81 %
100.00 %
1.8 s
GPU @ 2.5 Ghz (Python)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for
End-to-end Stereo Matching . Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR) 2019.
127
CamLiFlow
code
1.48 %
3.46 %
1.81 %
100.00 %
1.2 s
GPU @ 2.5 Ghz (Python + C/C++)
H. Liu, T. Lu, Y. Xu, J. Liu, W. Li and L. Chen: CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint
Optical Flow and Scene Flow Estimation . CVPR 2022.
128
Stereo expansion
code
1.48 %
3.46 %
1.81 %
100.00 %
2 s
GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Upgrading Optical Flow to 3D Scene Flow
through Optical Expansion . CVPR 2020.
129
ISDAFlow+ SAGFt
1.48 %
3.46 %
1.81 %
100.00 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
130
AIO-Stereo
code
1.63 %
2.72 %
1.82 %
100.00 %
0.23 s
1 core @ 2.5 Ghz (C/C++)
131
Sn-Stereo
1.66 %
2.63 %
1.82 %
100.00 %
0.35 s
GPU @ 1.5 Ghz (Python)
132
ADStereo
code
1.59 %
2.94 %
1.82 %
100.00 %
0.05 s
1 core @ 2.5 Ghz (Python)
133
LightStereo-L*
code
1.60 %
2.92 %
1.82 %
100.00 %
0.05 s
1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need
for Efficient 2D Cost Aggregation . arXiv preprint arXiv:2406.19833 2024.
134
OptStereo
1.50 %
3.43 %
1.82 %
100.00 %
0.10 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for
end-to-end self-supervised stereo matching . IEEE Robotics and Automation Letters 2021.
135
tt-Stereo
1.64 %
2.75 %
1.82 %
100.00 %
0.23 s
1 core @ 2.5 Ghz (C/C++)
136
LoS_RVC
1.58 %
3.08 %
1.83 %
100.00 %
0.19 s
1 core @ 2.5 Ghz (C/C++)
K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo: LoS: Local Structure Guided Stereo
Matching . Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) 2024.
137
NLCA-Net-3
code
1.45 %
3.78 %
1.83 %
100.00 %
0.44 s
>8 cores @ 3.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention
network for stereo matching . APSIPA Transactions on Signal and
Information Processing 2020.
138
AMNet
1.53 %
3.43 %
1.84 %
100.00 %
0.9 s
GPU @ 2.5 Ghz (Python)
X. Du, M. El-Khamy and J. Lee: AMNet: Deep Atrous Multiscale Stereo
Disparity Estimation Networks . 2019.
139
HCR
1.51 %
3.51 %
1.85 %
100.00 %
0.19 s
GPU @ 2.5 Ghz (Python)
Y. Tuming Yuan: Hourglass cascaded recurrent stereo
matching network . Image and Vision computing 2024.
140
GHUStereo-4-gwce
1.50 %
3.64 %
1.85 %
100.00 %
0.036 s
RTX 4070 (PyTorch)
141
ADStereo_fast
code
1.57 %
3.25 %
1.85 %
100.00 %
0.03 s
1 core @ 2.5 Ghz (Python)
142
UCFNet_RVC
code
1.57 %
3.33 %
1.86 %
100.00 %
0.21 s
GPU @ 2.5 Ghz (Python)
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
143
CFNet
code
1.54 %
3.56 %
1.88 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for
Robust Stereo Matching . IEEE Conference on Computer Vision
and
Pattern Recognition (CVPR) 2021. Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
144
G2L-Stereo
1.64 %
3.07 %
1.88 %
100.00 %
0.05 s
GPU @ 1.5 Ghz (Python)
145
RigidMask+ISF
code
1.53 %
3.65 %
1.89 %
100.00 %
3.3 s
GPU @ 2.5 Ghz (Python)
G. Yang and D. Ramanan: Learning to Segment Rigid Motions from Two
Frames . CVPR 2021.
146
DCVSMNet
code
1.60 %
3.33 %
1.89 %
100.00 %
0.07 s
GPU @ 2.5 Ghz (Python)
M. Tahmasebi, S. Huq, K. Meehan and M. McAfee: DCVSMNet: Double Cost Volume Stereo Matching Network . 2024.
147
AcfNet
code
1.51 %
3.80 %
1.89 %
100.00 %
0.48 s
GPU @ 2.5 Ghz (Python)
Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang: Adaptive Unimodal Cost Volume Filtering for Deep
Stereo Matching . AAAI 2020.
148
RSAstereo
1.58 %
3.50 %
1.90 %
100.00 %
0.03 s
1 core @ 2.5 Ghz (C/C++)
149
DualNet*
1.63 %
3.36 %
1.92 %
100.00 %
0.17 s
1 core @ 2.5 Ghz (C/C++)
150
NLCA_NET_v2_RVC
1.51 %
3.97 %
1.92 %
100.00 %
0.67 s
GPU @ 2.5 Ghz (Python)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention
network for stereo matching . APSIPA Transactions on Signal and
Information Processing 2020.
151
CDN
code
1.66 %
3.20 %
1.92 %
100.00 %
0.4 s
GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity
Estimation . Advances in Neural Information
Processing Systems 2020.
152
Abc-Net
1.47 %
4.20 %
1.92 %
100.00 %
0.83 s
4 core @ 2.5 Ghz (Python)
X. Li, Y. Fan, G. Lv and H. Ma: Area-based correlation and non-local
attention network for stereo matching . The Visual Computer 2021.
153
UAIStereo
1.66 %
3.26 %
1.92 %
100.00 %
0.06 s
GPU @ 3.5 Ghz (Python)
154
LightStereo-L
code
1.78 %
2.64 %
1.93 %
100.00 %
0.03 s
1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need
for Efficient 2D Cost Aggregation . arXiv preprint arXiv:2406.19833 2024.
155
GANet-15
code
1.55 %
3.82 %
1.93 %
100.00 %
0.36 s
GPU (Pytorch)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for
End-to-end Stereo Matching . Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR) 2019.
156
PCVNet
1.68 %
3.19 %
1.93 %
100.00 %
0.05 s
GPU @ 2.5 Ghz (Python)
J. Zeng, C. Yao, L. Yu, Y. Wu and Y. Jia: Parameterized Cost Volume for Stereo
Matching . Proceedings of the IEEE/CVF
International Conference on Computer Vision 2023.
157
FusionStereo
1.60 %
3.67 %
1.94 %
100.00 %
16 s
1 core @ 2.5 Ghz (Python)
158
CAL-Net
1.59 %
3.76 %
1.95 %
100.00 %
0.44 s
2 cores @ 2.5 Ghz (Python)
S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang: Cost Affinity Learning Network for
Stereo Matching . IEEE International Conference on
Acoustics, Speech and Signal Processing,
ICASSP 2021, Toronto, ON, Canada,
June 6-11, 2021 2021.
159
CCAStereo
1.58 %
3.81 %
1.95 %
100.00 %
0.05 s
GPU @ 1.5 Ghz (Python)
160
TCMNet
1.68 %
3.33 %
1.95 %
100.00 %
0.02 s
RTX 3090 GPU PyTorch
161
NLCA-Net
code
1.53 %
4.09 %
1.96 %
100.00 %
0.6 s
1 core @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention
network for stereo matching . APSIPA Transactions on Signal and
Information Processing 2020.
162
CFNet_RVC
code
1.65 %
3.53 %
1.96 %
100.00 %
0.22 s
GPU @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for
Robust Stereo Matching . IEEE Conference on Computer Vision
and
Pattern Recognition (CVPR) 2021. Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
163
PGNet
1.64 %
3.60 %
1.96 %
100.00 %
0.7 s
1 core @ 2.5 Ghz (python)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: PGNet: Panoptic parsing guided deep stereo
matching . Neurocomputing 2021.
164
SG-MSNet3D
1.61 %
3.81 %
1.98 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo matching . 2024.
165
HITNet
code
1.74 %
3.20 %
1.98 %
100.00 %
0.02 s
GPU @ 2.5 Ghz (C/C++)
V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz: HITNet: Hierarchical Iterative Tile
Refinement Network for Real-time Stereo
Matching . CVPR 2021.
166
SGNet
1.63 %
3.76 %
1.99 %
100.00 %
0.6 s
1 core @ 2.5 Ghz (Python + C/C++)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: SGNet: Semantics Guided Deep Stereo
Matching . Proceedings of the Asian Conference
on Computer Vision (ACCV) 2020.
167
CSN
code
1.59 %
4.03 %
2.00 %
100.00 %
0.6 s
1 core @ 2.5 Ghz (Python)
X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan and P. Tan: Cascade cost volume for high-resolution
multi-view stereo and stereo matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition 2020.
168
SG-PSMnet
1.77 %
3.13 %
2.00 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo
matching . 2024.
169
Fast-ACVNet+
code
1.70 %
3.53 %
2.01 %
100.00 %
0.05 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, Y. Wang, J. Cheng, J. Tang and X. Yang: Accurate and efficient stereo matching
via attention concatenation volume . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
170
CoEx
code
1.74 %
3.41 %
2.02 %
100.00 %
0.027 s
GPU RTX 2080Ti (Python)
A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim: Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation . 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
171
HD^3-Stereo
code
1.70 %
3.63 %
2.02 %
100.00 %
0.14 s
NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition
for Match Density Estimation . CVPR 2019.
172
SCV-Stereo
code
1.67 %
3.78 %
2.02 %
100.00 %
0.08 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: SCV-Stereo: Learning stereo
matching from a sparse cost volume . 2021 IEEE International Conference
on Image Processing (ICIP) 2021.
173
AANet+
code
1.65 %
3.96 %
2.03 %
100.00 %
0.06 s
NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020.
174
LightStereo-M
code
1.81 %
3.22 %
2.04 %
100.00 %
0.02 s
1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need
for Efficient 2D Cost Aggregation . arXiv preprint arXiv:2406.19833 2024.
175
CFNet_SFC
1.75 %
3.53 %
2.05 %
100.00 %
0.12 s
GPU @ 2.5 Ghz (Python)
176
LR-PSMNet
code
1.65 %
4.13 %
2.06 %
100.00 %
0.5 s
GPU @ 2.5 Ghz (Python)
W. Chuah, R. Tennakoon, R. Hoseinnezhad, A. Bab-Hadiashar and D. Suter: Adjusting Bias in Long Range Stereo
Matching: A semantics guided approach . 2020.
177
iRaftStereo_RVC
1.88 %
3.03 %
2.07 %
100.00 %
0.5 s
GPU @ 2.5 Ghz (Python)
H. Jiang, R. Xu and W. Jiang: An Improved RaftStereo Trained with A
Mixed Dataset for the Robust Vision Challenge
2022 . arXiv preprint arXiv:2210.12785 2022.
178
PSM + SMD-Nets
code
1.69 %
4.01 %
2.08 %
100.00 %
0.41 s
1 core @ 2.5 Ghz (Python + C/C++)
F. Tosi, Y. Liao, C. Schmitt and A. Geiger: SMD-Nets: Stereo Mixture Density Networks . Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
179
MDCNet
1.76 %
3.68 %
2.08 %
100.00 %
0.05 s
1 core @ 2.5 Ghz (C/C++)
W. Chen, X. Jia, M. Wu and Z. Liang: Multi-Dimensional Cooperative Network for
Stereo Matching . IEEE Robotics and Automation Letters 2022.
180
EdgeStereo-V2
1.84 %
3.30 %
2.08 %
100.00 %
0.32s
Nvidia GTX Titan Xp
X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu: Edgestereo: An effective multi-task
learning network for stereo matching and edge
detection . International Journal of Computer
Vision (IJCV) 2019.
181
SG-GwcNet-g
1.73 %
3.88 %
2.09 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo matching . 2024.
182
3D-MSNet / MSNet3D
code
1.75 %
3.87 %
2.10 %
100.00 %
1.5s
Python,1080Ti
F. Shamsafar, S. Woerz, R. Rahim and A. Zell: MobileStereoNet: Towards Lightweight Deep
Networks for Stereo Matching . Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision 2022.
183
GwcNet-g
code
1.74 %
3.93 %
2.11 %
100.00 %
0.32 s
GPU @ 2.0 Ghz (Python + C/C++)
X. Guo, K. Yang, W. Yang, X. Wang and H. Li: Group-wise correlation stereo network . CVPR 2019.
184
SSPCVNet
1.75 %
3.89 %
2.11 %
100.00 %
0.9 s
1 core @ 2.5 Ghz (Python)
Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju: Semantic Stereo Matching With Pyramid Cost
Volumes . The IEEE International Conference on
Computer Vision (ICCV) 2019.
185
GHUStereo-8-gwce
1.88 %
3.34 %
2.12 %
100.00 %
0.021 s
RTX 4070 (PyTorch)
186
WSMCnet
code
1.72 %
4.19 %
2.13 %
100.00 %
0.39s
Nvidia GTX 1070 (Pytorch)
Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan: Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network . Acta Optica Sinica 2019.
187
HSM-1.8x
code
1.80 %
3.85 %
2.14 %
100.00 %
0.14 s
Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High-
Resolution Images . The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) 2019.
188
SG
1.75 %
4.13 %
2.15 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
189
DeepPruner (best)
code
1.87 %
3.56 %
2.15 %
100.00 %
0.18 s
1 core @ 2.5 Ghz (C/C++)
S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun: DeepPruner: Learning Efficient Stereo Matching
via Differentiable PatchMatch . ICCV 2019.
190
Stereo-fusion-SJTU
1.87 %
3.61 %
2.16 %
100.00 %
0.7 s
Nvidia GTX Titan Xp
X. Song, X. Zhao, H. Hu and L. Fang: EdgeStereo: A Context Integrated Residual
Pyramid Network for Stereo Matching . Asian Conference on Computer Vision 2018.
191
MCVFNet
1.82 %
3.94 %
2.18 %
100.00 %
0.029 s
RTX 2080TI
192
AutoDispNet-CSS
code
1.94 %
3.37 %
2.18 %
100.00 %
0.9 s
1 core @ 2.5 Ghz (C/C++)
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox: AutoDispNet: Improving Disparity
Estimation with AutoML . The IEEE International Conference
on Computer Vision (ICCV) 2019.
193
BGNet+
1.81 %
4.09 %
2.19 %
100.00 %
0.03 s
GPU @ 2.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching
Network . Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) 2021.
194
Bi3D
code
1.95 %
3.48 %
2.21 %
100.00 %
0.48 s
GPU @ 1.5 Ghz (Python)
A. Badki, A. Troccoli, K. Kim, J. Kautz, P. Sen and O. Gallo: Bi3D: Stereo Depth Estimation via Binary Classifications . The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
195
Q
code
1.84 %
4.05 %
2.21 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
196
dh
1.86 %
4.01 %
2.22 %
100.00 %
1.9 s
1 core @ 2.5 Ghz (C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for
End-to-end Stereo Matching . Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR) 2019.
197
SENSE
code
2.07 %
3.01 %
2.22 %
100.00 %
0.32s
GPU, GTX 2080Ti
H. Jiang, D. Sun, V. Jampani, Z. Lv, E. Learned-Miller and J. Kautz: SENSE: A Shared Encoder Network for Scene-Flow
Estimation . The IEEE International Conference on Computer
Vision (ICCV) 2019.
198
GHUStereo-8-nce
1.92 %
3.79 %
2.23 %
100.00 %
0.019 s
RTX 4070 (PyTorch)
199
SegStereo
code
1.88 %
4.07 %
2.25 %
100.00 %
0.6 s
Nvidia GTX Titan Xp
G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia: SegStereo: Exploiting Semantic
Information for Disparity Estimation . ECCV 2018.
200
DTF_SENSE
2.08 %
3.13 %
2.25 %
100.00 %
0.76 s
1 core @ 2.5 Ghz (C/C++)
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions . IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
201
OpenStereo-PSMNet
code
1.80 %
4.58 %
2.26 %
100.00 %
0.21 s
GPU RTX3090
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023.
202
MCV-MFC
1.95 %
3.84 %
2.27 %
100.00 %
0.35 s
1 core @ 2.5 Ghz (C/C++)
Z. Liang, Y. Guo, Y. Feng, W. Chen, L. Qiao, L. Zhou, J. Zhang and H. Liu: Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy . IEEE transactions on pattern analysis and machine intelligence 2019.
203
HSM-1.5x
code
1.95 %
3.93 %
2.28 %
100.00 %
0.085 s
Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on
High-
Resolution Images . The IEEE Conference on Computer
Vision
and Pattern Recognition (CVPR) 2019.
204
SG-MSNet2D
1.94 %
4.07 %
2.29 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo matching . 2024.
205
LightStereo-S
code
2.00 %
3.80 %
2.30 %
100.00 %
0.01 s
1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need
for Efficient 2D Cost Aggregation . arXiv preprint arXiv:2406.19833 2024.
206
Separable Convs
code
1.90 %
4.36 %
2.31 %
100.00 %
2 s
1 core @ 2.5 Ghz (Python)
R. Rahim, F. Shamsafar and A. Zell: Separable Convolutions for Optimizing 3D Stereo Networks . 2021 IEEE International Conference on Image Processing (ICIP) 2021.
207
Separable Convs
code
1.90 %
4.36 %
2.31 %
100.00 %
2 s
1 core @ 2.5 Ghz (Python)
R. Rahim, F. Shamsafar and A. Zell: Separable Convolutions for Optimizing 3D Stereo Networks . 2021 IEEE International Conference on Image Processing (ICIP) 2021.
208
CFP-Net
code
1.90 %
4.39 %
2.31 %
100.00 %
0.9 s
8 cores @ 2.5 Ghz (Python)
Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li: Multi-scale Cross-form Pyramid Network for Stereo Matching . arXiv preprint 2019.
209
PSMNet
code
1.86 %
4.62 %
2.32 %
100.00 %
0.41 s
Nvidia GTX Titan Xp
J. Chang and Y. Chen: Pyramid Stereo Matching Network . arXiv preprint arXiv:1803.08669 2018.
210
GANetREF_RVC
code
1.88 %
4.58 %
2.33 %
100.00 %
1.62 s
GPU @ >3.5 Ghz (Python + C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-
to-end Stereo Matching . Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2019.
211
TriStereoNet
code
1.86 %
4.77 %
2.35 %
100.00 %
0.5 s
Python,1080Ti
F. Shamsafar and A. Zell: TriStereoNet: A Trinocular Framework for
Multi-baseline Disparity Estimation . arXiv preprint arXiv:2111.12502 2021.
212
MABNet_origin
code
1.89 %
5.02 %
2.41 %
100.00 %
0.38 s
Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network
Based on Multibranch Adjustable Bottleneck
Module . .
213
GhostStereoNet
1.91 %
5.08 %
2.44 %
100.00 %
0.04 s
GPU @ 3.0 Ghz (Python)
214
ERSCNet
2.11 %
4.46 %
2.50 %
100.00 %
0.28 s
GPU @ 2.5 Ghz (Python)
Anonymous: ERSCNet . Proceedings of the European
Conference on Computer Vision (ECCV) 2020.
215
BGNet
2.07 %
4.74 %
2.51 %
100.00 %
0.02 s
GPU @ >3.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo
Matching Network . Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) 2021.
216
UberATG-DRISF
2.16 %
4.49 %
2.55 %
100.00 %
0.75 s
CPU+GPU @ 2.5 Ghz (Python)
W. Ma, S. Wang, R. Hu, Y. Xiong and R. Urtasun: Deep Rigid Instance Scene Flow . CVPR 2019.
217
AANet
code
1.99 %
5.39 %
2.55 %
100.00 %
0.062 s
NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020.
218
PDSNet
2.29 %
4.05 %
2.58 %
100.00 %
0.5 s
1 core @ 2.5 Ghz (Python)
S. Tulyakov, A. Ivanov and F. Fleuret: Practical Deep Stereo (PDS): Toward
applications-friendly deep stereo matching . Proceedings of the international conference
on Neural Information Processing Systems (NIPS) 2018.
219
DeepPruner (fast)
code
2.32 %
3.91 %
2.59 %
100.00 %
0.06 s
1 core @ 2.5 Ghz (C/C++)
S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun: DeepPruner: Learning Efficient Stereo Matching
via Differentiable PatchMatch . ICCV 2019.
220
FADNet
code
2.50 %
3.10 %
2.60 %
100.00 %
0.05 s
Tesla V100 (Python)
Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu: FADNet: A Fast and Accurate Network
for Disparity Estimation . arXiv preprint arXiv:2003.10758 2020.
221
LI-ACVNet
2.20 %
4.59 %
2.60 %
100.00 %
0.14 s
GPU @ 2.5 Ghz (Python)
222
MMStereo
2.25 %
4.38 %
2.61 %
100.00 %
0.04 s
Nvidia Titan RTX (Python)
K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya: A Learned Stereo Depth System for
Robotic Manipulation in Homes . .
223
SCV
code
2.22 %
4.53 %
2.61 %
100.00 %
0.36 s
Nvidia GTX 1080 Ti
C. Lu, H. Uchiyama, D. Thomas, A. Shimada and R. Taniguchi: Sparse Cost Volume for Efficient
Stereo Matching . Remote Sensing 2018.
224
WaveletStereo:
2.24 %
4.62 %
2.63 %
100.00 %
0.27 s
1 core @ 2.5 Ghz (C/C++)
Anonymous: WaveletStereo: Learning wavelet coefficients
for stereo matching . arXiv: Computer Vision and Pattern
Recognition 2019.
225
RLStereo
code
2.09 %
5.38 %
2.64 %
100.00 %
0.03 s
1 core @ 2.5 Ghz (Python)
Anonymous: RLStereo: Real-time Stereo Matching
based on Reinforcement Learning . Proceedings of the IEEE/CVF
International Conference on Computer Vision 2021.
226
AANet_RVC
2.23 %
4.89 %
2.67 %
100.00 %
0.1 s
GPU @ 2.5 Ghz (Python)
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for
Efficient Stereo Matching . CVPR 2020.
227
CRL
code
2.48 %
3.59 %
2.67 %
100.00 %
0.47 s
Nvidia GTX 1080
J. Pang, W. Sun, J. Ren, C. Yang and Q. Yan: Cascade residual learning: A two-stage
convolutional neural network for stereo
matching . ICCV Workshop on Geometry Meets
Deep Learning 2017.
228
CKDNet_1.0
2.26 %
5.02 %
2.72 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
229
SG_small
2.29 %
4.95 %
2.73 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
230
2D-MSNet / MSNet2D
code
2.49 %
4.53 %
2.83 %
100.00 %
0.4s
Python,1080Ti
F. Shamsafar, S. Woerz, R. Rahim and A. Zell: MobileStereoNet: Towards Lightweight Deep
Networks for Stereo Matching . Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision 2022.
231
GC-NET
2.21 %
6.16 %
2.87 %
100.00 %
0.9 s
Nvidia GTX Titan X
A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry: End-to-End Learning of Geometry and Context for
Deep Stereo Regression . Proceedings of the International Conference on
Computer Vision (ICCV) 2017.
232
DualNet
2.46 %
5.25 %
2.92 %
100.00 %
0.17 s
1 core @ 2.5 Ghz (C/C++)
233
PVStereo
2.29 %
6.50 %
2.99 %
100.00 %
0.10 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module
for end-to-end self-supervised stereo matching . IEEE Robotics and Automation
Letters 2021.
234
LRCR
2.55 %
5.42 %
3.03 %
100.00 %
49.2 s
Nvidia GTX Titan X
Z. Jie, P. Wang, Y. Ling, B. Zhao, Y. Wei, J. Feng and W. Liu: Left-Right Comparative Recurrent Model for
Stereo Matching . IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2018.
235
CKDNet_0.5
2.35 %
6.70 %
3.07 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
236
Fast DS-CS
code
2.83 %
4.31 %
3.08 %
100.00 %
0.02 s
GPU @ 2.0 Ghz (Python + C/C++)
K. Yee and A. Chakrabarti: Fast Deep Stereo with 2D Convolutional
Processing of Cost Signatures . WACV 2020 (to appear).
237
AdaStereo
2.59 %
5.55 %
3.08 %
100.00 %
0.41 s
GPU @ 2.5 Ghz (Python)
X. Song, G. Yang, X. Zhu, H. Zhou, Z. Wang and J. Shi: AdaStereo: A Simple and Efficient
Approach for Adaptive Stereo Matching . CVPR 2021. X. Song, G. Yang, X. Zhu, H. Zhou, Y. Ma, Z. Wang and J. Shi: AdaStereo: An Efficient Domain-Adaptive
Stereo Matching Approach . IJCV 2021.
238
RecResNet
code
2.46 %
6.30 %
3.10 %
100.00 %
0.3 s
GPU @ NVIDIA TITAN X (Tensorflow)
K. Batsos and P. Mordohai: RecResNet: A Recurrent Residual CNN
Architecture for Disparity Map Enhancement . In International Conference on 3D
Vision (3DV) 2018.
239
NVStereoNet
code
2.62 %
5.69 %
3.13 %
100.00 %
0.6 s
NVIDIA Titan Xp
N. Smolyanskiy, A. Kamenev and S. Birchfield: On the Importance of Stereo for Accurate
Depth Estimation: An Efficient Semi-Supervised
Deep Neural Network Approach . arXiv preprint arXiv:1803.09719 2018.
240
DRR
2.58 %
6.04 %
3.16 %
100.00 %
0.4 s
Nvidia GTX Titan X
S. Gidaris and N. Komodakis: Detect, Replace, Refine: Deep Structured Prediction For Pixel Wise Labeling . arXiv preprint arXiv:1612.04770 2016.
241
DWARF
3.20 %
3.94 %
3.33 %
100.00 %
0.14s - 1.43s
TitanXP - JetsonTX2
F. Aleotti, M. Poggi, F. Tosi and S. Mattoccia: Learning end-to-end scene flow by
distilling single tasks knowledge . Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI-20) 2020.
242
SsSMnet
2.70 %
6.92 %
3.40 %
100.00 %
0.8 s
P100
Y. Zhong, Y. Dai and H. Li: Self-Supervised Learning for Stereo
Matching with Self-Improving Ability . arXiv:1709.00930 2017.
243
L-ResMatch
code
2.72 %
6.95 %
3.42 %
100.00 %
48 s
1 core @ 2.5 Ghz (C/C++)
A. Shaked and L. Wolf: Improved Stereo Matching with Constant Highway
Networks and Reflective Loss . arXiv preprint arxiv:1701.00165 2016.
244
Displets v2
code
3.00 %
5.56 %
3.43 %
100.00 %
265 s
>8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities
using Object Knowledge . Conference on Computer Vision and
Pattern Recognition (CVPR) 2015.
245
LBPS
code
2.85 %
6.35 %
3.44 %
100.00 %
0.39 s
GPU @ 2.5 Ghz (C/C++)
P. Knöbelreiter, C. Sormann, A. Shekhovtsov, F. Fraundorfer and T. Pock: Belief Propagation Reloaded: Learning
BP-Layers for Labeling Problems . IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) 2020.
246
ACOSF
2.79 %
7.56 %
3.58 %
100.00 %
5 min
1 core @ 3.0 Ghz (Matlab + C/C++)
C. Li, H. Ma and Q. Liao: Two-Stage Adaptive Object Scene Flow Using
Hybrid CNN-CRF Model . International Conference on Pattern
Recognition (ICPR) 2020.
247
CNNF+SGM
2.78 %
7.69 %
3.60 %
100.00 %
71 s
TESLA K40C
F. Zhang and B. Wah: Fundamental Principles on Learning New
Features for Effective Dense Matching . IEEE Transactions on Image
Processing 2018.
248
PBCP
2.58 %
8.74 %
3.61 %
100.00 %
68 s
Nvidia GTX Titan X
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for
Dense Disparity Map . British Machine Vision Conference
(BMVC) 2016.
249
SGM-Net
2.66 %
8.64 %
3.66 %
100.00 %
67 s
Titan X
A. Seki and M. Pollefeys: SGM-Nets: Semi-Global Matching With Neural
Networks . CVPR 2017.
250
CKDNet_0.3
2.84 %
7.77 %
3.66 %
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
251
SMFormer
2.79 %
8.17 %
3.68 %
100.00 %
0.3 s
GPU @ 2.5 Ghz (Python)
252
DSMNet-synthetic
3.11 %
6.72 %
3.71 %
100.00 %
1.6 s
4 cores @ 2.5 Ghz (C/C++)
F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr: Domain-invariant Stereo Matching
Networks . Europe Conference on Computer Vision
(ECCV) 2020.
253
CAS++
3.10 %
6.89 %
3.73 %
99.98 %
.1 s
GPU @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
254
HSM-Net_RVC
code
2.74 %
8.73 %
3.74 %
100.00 %
0.97 s
GPU @ 2.5 Ghz (Python)
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical deep stereo matching on
high-resolution images . Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition 2019.
255
DualNet-one stage
2.89 %
8.73 %
3.86 %
100.00 %
0.17 s
1 core @ 2.5 Ghz (C/C++)
256
MABNet_tiny
code
3.04 %
8.07 %
3.88 %
100.00 %
0.11 s
Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network
Based on Multibranch Adjustable Bottleneck
Module . .
257
MC-CNN-acrt
code
2.89 %
8.88 %
3.89 %
100.00 %
67 s
Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches . Submitted to JMLR .
258
FD-Fusion
code
3.22 %
7.44 %
3.92 %
100.00 %
0.01 s
1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Boulch and J. Moras: Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations . International Conference on 3D Vision (3DV) 2019.
259
ADCPNet
3.27 %
7.58 %
3.98 %
100.00 %
0.007 s
GPU @ 2.5 Ghz (Python)
H. Dai, X. Zhang, Y. Zhao, H. Sun and N. Zheng: Adaptive Disparity Candidates Prediction
Network for Efficient Real-Time Stereo Matching . IEEE Transactions on Circuits and
Systems for Video Technology 2022.
260
Reversing-PSMNet
code
3.13 %
8.70 %
4.06 %
100.00 %
0.41 s
1 core @ 1.5 Ghz (Python)
F. Aleotti, F. Tosi, L. Zhang, M. Poggi and S. Mattoccia: Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation . European Conference on Computer Vision (ECCV) 2020.
261
DGS
3.21 %
8.62 %
4.11 %
100.00 %
0.32 s
GPU @ 2.5 Ghz (Python + C/C++)
W. Chuah, R. Tennakoon, A. Bab-Hadiashar and D. Suter: Achieving Domain Robustness in Stereo
Matching Networks by Removing Shortcut Learning . arXiv preprint arXiv:2106.08486 2021.
262
PRSM
code
3.02 %
10.52 %
4.27 %
99.99 %
300 s
1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a
Piecewise Rigid Scene Model . ijcv 2015.
263
DispNetC
code
4.32 %
4.41 %
4.34 %
100.00 %
0.06 s
Nvidia GTX Titan X (Caffe)
N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox: A Large Dataset to Train
Convolutional Networks for
Disparity, Optical Flow, and Scene Flow
Estimation . CVPR 2016.
264
SGM-Forest
3.11 %
10.74 %
4.38 %
99.92 %
6 seconds
1 core @ 3.0 Ghz (Python/C/C++)
J. Schönberger, S. Sinha and M. Pollefeys: Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-Global Matching . European Conference on Computer Vision (ECCV) 2018.
265
SSF
3.55 %
8.75 %
4.42 %
100.00 %
5 min
1 core @ 2.5 Ghz (Matlab + C/C++)
Z. Ren, D. Sun, J. Kautz and E. Sudderth: Cascaded Scene Flow Prediction using
Semantic Segmentation . International Conference on 3D Vision
(3DV) 2017.
266
SMV
3.45 %
9.32 %
4.43 %
100.00 %
0.5 s
GPU @ 2.5 Ghz (C/C++)
W. Yuan, Y. Zhang, B. Wu, S. Zhu, P. Tan, M. Wang and Q. Chen: Stereo Matching by Self-
supervision of Multiscopic Vision . IEEE/RSJ International
Conference on Intelligent Robots and
Systems (IROS) 2021.
267
ISF
4.12 %
6.17 %
4.46 %
100.00 %
10 min
1 core @ 3 Ghz (C/C++)
A. Behl, O. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger: Bounding Boxes, Segmentations and Object
Coordinates: How Important is Recognition for 3D
Scene Flow Estimation in Autonomous Driving
Scenarios? . International Conference on Computer
Vision (ICCV) 2017.
268
Content-CNN
3.73 %
8.58 %
4.54 %
100.00 %
1 s
Nvidia GTX Titan X (Torch)
W. Luo, A. Schwing and R. Urtasun: Efficient Deep Learning for Stereo Matching . CVPR 2016.
269
SSMNet
3.93 %
7.85 %
4.58 %
100.00 %
0.01 s
GPU @ 2.0 Ghz (Python)
270
MADnet
code
3.75 %
9.20 %
4.66 %
100.00 %
0.02 s
GPU @ 2.5 Ghz (Python)
A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia and L. Di Stefano: Real-Time self-adaptive deep stereo . The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2019.
271
Self-SuperFlow-ft
3.81 %
8.92 %
4.66 %
100.00 %
0.13 s
GTX 1080 Ti
K. Bendig, R. Schuster and D. Stricker: Self-SuperFlow: Self-supervised Scene Flow Prediction in
Stereo Sequences . International Conference on Image Processing (ICIP) 2022.
272
Pseudo-Stereo
3.11 %
12.52 %
4.68 %
100.00 %
0.15 s
GPU @ 2.5 Ghz (Python)
273
DTF_PWOC
3.91 %
8.57 %
4.68 %
100.00 %
0.38 s
RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions . IEEE Winter Conference on Applications of Computer Vision (WACV) 2021.
274
P3SNet+
code
4.15 %
7.59 %
4.72 %
100.00 %
0.01 s
1 core @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo
Network . IEEE Transactions on Intelligent
Transportation Systems 2023.
275
SAFT-Stereo
3.44 %
11.48 %
4.78 %
100.00 %
0.007 s
NVIDIA GeForce RTX 4090
276
VN
4.29 %
7.65 %
4.85 %
100.00 %
0.5 s
GPU @ 3.5 Ghz (Python + C/C++)
P. Knöbelreiter and T. Pock: Learned Collaborative Stereo Refinement . German Conference on Pattern Recognition (GCPR) 2019.
277
MC-CNN-WS
code
3.78 %
10.93 %
4.97 %
100.00 %
1.35 s
1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch
S. Tulyakov, A. Ivanov and F. Fleuret: Weakly supervised learning of deep
metrics for stereo reconstruction . ICCV 2017.
278
3DMST
3.36 %
13.03 %
4.97 %
100.00 %
93 s
1 core @ >3.5 Ghz (C/C++)
X. Lincheng Li and L. Zhang: 3D Cost Aggregation with Multiple Minimum
Spanning Trees for Stereo Matching . submitted to Applied Optics .
279
CBMV_ROB
code
3.55 %
12.09 %
4.97 %
100.00 %
250 s
6 core @ 3.0 Ghz (Python + C/C++)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching
Volume for Disparity Estimation . IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2018.
280
OSF+TC
4.11 %
9.64 %
5.03 %
100.00 %
50 min
1 core @ 2.5 Ghz (C/C++)
M. Neoral and J. Šochman: Object Scene Flow with Temporal
Consistency . 22nd Computer Vision Winter
Workshop (CVWW) 2017.
281
P3SNet
code
4.40 %
8.28 %
5.05 %
100.00 %
0.01 s
GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo
Network . IEEE Transactions on Intelligent
Transportation Systems 2023.
282
CBMV
code
4.17 %
9.53 %
5.06 %
100.00 %
250 s
6 cores @ 3.0 Ghz (Python,C/C++,CUDA Nvidia TitanX)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching
Volume for Disparity Estimation . 2018.
283
PWOC-3D
code
4.19 %
9.82 %
5.13 %
100.00 %
0.13 s
GTX 1080 Ti
R. Saxena, R. Schuster, O. Wasenmüller and D. Stricker: PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation . Intelligent Vehicles Symposium (IV) 2019.
284
StereoVAE
4.25 %
10.18 %
5.23 %
100.00 %
0.03 s
Jetson AGX Xavier GPU
Q. Chang, X. Li, X. Xu, X. Liu, Y. Li and J. Miyazaki: StereoVAE: A lightweight stereo matching
system using embedded GPUs . International Conference on Robotics
and Automation 2023.
285
OSF 2018
code
4.11 %
11.12 %
5.28 %
100.00 %
390 s
1 core @ 2.5 Ghz (Matlab + C/C++)
M. Menze, C. Heipke and A. Geiger: Object Scene Flow . ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 2018.
286
SPS-St
code
3.84 %
12.67 %
5.31 %
100.00 %
2 s
1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling,
Stereo and Flow Estimation . ECCV 2014.
287
MDP
4.19 %
11.25 %
5.36 %
100.00 %
11.4 s
4 cores @ 3.5 Ghz (Matlab + C/C++)
A. Li, D. Chen, Y. Liu and Z. Yuan: Coordinating Multiple Disparity Proposals for Stereo Computation . IEEE Conference on Computer Vision and Pattern Recognition 2016.
288
UFD-PRiME
3.66 %
15.05 %
5.55 %
100.00 %
0.55 s
GPU @ 2.5 Ghz (Python)
289
SFF++
4.27 %
12.38 %
5.62 %
100.00 %
78 s
4 cores @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk and D. Stricker: SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation . International Journal of Computer Vision (IJCV) 2019.
290
TinyStereo
4.99 %
9.33 %
5.71 %
100.00 %
0.02 s
Jetson AGX Xavier GPU
Q. Chang, X. Xu, A. Zha, M. Er, Y. Sun and Y. Li: TinyStereo: A Tiny Coarse-to-Fine
Framework for Vision-Based Depth Estimation on
Embedded GPUs . IEEE Transactions on Systems, Man, and
Cybernetics: Systems 2024.
291
OSF
code
4.54 %
12.03 %
5.79 %
100.00 %
50 min
1 core @ 2.5 Ghz (C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles . Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
292
StereoNet_unsup_DMB
4.68 %
12.06 %
5.91 %
100.00 %
0.02 min
GPU @ 2.5 Ghz (Python)
293
CFNet_unsup_DMB
4.64 %
12.33 %
5.92 %
100.00 %
0.02 s
GPU @ 2.5 Ghz (Python)
294
pSGM
4.84 %
11.64 %
5.97 %
100.00 %
7.77 s
4 cores @ 3.5 Ghz (C/C++)
Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung: Memory-Efficient Parametric Semiglobal
Matching . IEEE Signal Processing Letters 2018.
295
CSF
4.57 %
13.04 %
5.98 %
99.99 %
80 s
1 core @ 2.5 Ghz (C/C++)
Z. Lv, C. Beall, P. Alcantarilla, F. Li, Z. Kira and F. Dellaert: A Continuous Optimization Approach for
Efficient and Accurate Scene Flow . European Conf. on Computer Vision
(ECCV) 2016.
296
MBM
4.69 %
13.05 %
6.08 %
100.00 %
0.13 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Multi-Block-Matching Approach for Stereo . IV 2015.
297
CRD-Fusion
code
4.59 %
13.68 %
6.11 %
100.00 %
0.02 s
GPU @ 2.5 Ghz (Python)
X. Fan, S. Jeon and B. Fidan: Occlusion-Aware Self-Supervised Stereo
Matching with Confidence Guided Raw Disparity
Fusion . Conference on Robots and Vision 2022.
298
PR-Sceneflow
code
4.74 %
13.74 %
6.24 %
100.00 %
150 s
4 core @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow . ICCV 2013.
299
DispSegNet
4.20 %
16.97 %
6.33 %
100.00 %
0.9 s
GPU @ 2.5 Ghz (Python)
J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson: DispSegNet: Leveraging Semantics for End-
to-End Learning of Disparity Estimation From
Stereo Imagery . IEEE Robotics and Automation Letters 2019.
300
DeepCostAggr
code
5.34 %
11.35 %
6.34 %
99.98 %
0.03 s
GPU @ 2.5 Ghz (C/C++)
A. Kuzmin, D. Mikushin and V. Lempitsky: End-to-end Learning of Cost-Volume Aggregation
for
Real-time Dense Stereo . 2017 IEEE 27th International Workshop on
Machine Learning for Signal Processing (MLSP) 2017.
301
SGM_RVC
5.06 %
13.00 %
6.38 %
100.00 %
0.11 s
Nvidia GTX 980
H. Hirschm\"uller: Stereo Processing by Semi-Global
Matching and Mutual Information . IEEE Transactions on Pattern
Analysis and Machine Intelligence 2008.
302
UHP
5.00 %
13.70 %
6.45 %
100.00 %
0.02 s
GPU @ 2.5 Ghz (C/C++)
R. Yang, X. Li, R. Cong and J. Du: Unsupervised Hierarchical Iterative Tile
Refinement Network with 3D Planar Segmentation
Loss . IEEE Robotics and Automation Letters 2024.
303
SSpsm
5.00 %
13.90 %
6.48 %
100.00 %
0.8 s
GPU @ 2.5 Ghz (Python)
304
SceneFFields
5.12 %
13.83 %
6.57 %
100.00 %
65 s
4 cores @ 3.7 Ghz (C/C++)
R. Schuster, O. Wasenmüller, G. Kuschk, C. Bailer and D. Stricker: SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences . IEEE Winter Conference on Applications of Computer Vision (WACV) 2018.
305
SPS+FF++
code
5.47 %
12.19 %
6.59 %
100.00 %
36 s
1 core @ 3.5 Ghz (C/C++)
R. Schuster, O. Wasenmüller and D. Stricker: Dense Scene Flow from Stereo Disparity and Optical Flow . ACM Computer Science in Cars Symposium (CSCS) 2018.
306
Flow2Stereo
5.01 %
14.62 %
6.61 %
99.97 %
0.05 s
GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised
Learning of Optical Flow and Stereo Matching . CVPR 2020.
307
spsm-gan
5.42 %
12.84 %
6.65 %
100.00 %
0.8 s
GPU @ 2.5 Ghz (Python)
308
PASMnet_DMB
5.24 %
13.96 %
6.69 %
100.00 %
10 s
1 core @ 2.5 Ghz (Python)
309
FSF+MS
5.72 %
11.84 %
6.74 %
100.00 %
2.7 s
4 cores @ 3.5 Ghz (C/C++)
T. Taniai, S. Sinha and Y. Sato: Fast Multi-frame Stereo Scene Flow
with Motion Segmentation . IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2017) 2017.
310
AABM
4.88 %
16.07 %
6.74 %
100.00 %
0.08 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Stereo Image Warping for Improved Depth Estimation of Road Surfaces . IV 2013.
311
SGM+C+NL
code
5.15 %
15.29 %
6.84 %
100.00 %
4.5 min
1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information . PAMI 2008. D. Sun, S. Roth and M. Black: A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them . IJCV 2013.
312
SGM+LDOF
code
5.15 %
15.29 %
6.84 %
100.00 %
86 s
1 core @ 2.5 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching and Mutual Information . PAMI 2008. T. Brox and J. Malik: Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation . PAMI 2011.
313
SGM+SF
5.15 %
15.29 %
6.84 %
100.00 %
45 min
16 core @ 3.2 Ghz (C/C++)
H. Hirschmüller: Stereo Processing by Semiglobal Matching
and Mutual Information . PAMI 2008. M. Hornacek, A. Fitzgibbon and C. Rother: SphereFlow: 6
DoF Scene Flow from RGB-D Pairs . CVPR 2014.
314
SNCC
5.36 %
16.05 %
7.14 %
100.00 %
0.08 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Two-Stage Correlation Method for Stereoscopic Depth Estimation . DICTA 2010.
315
Permutation Stereo
5.53 %
15.47 %
7.18 %
99.93 %
30 s
GPU @ 2.5 Ghz (Matlab)
P. Brousseau and S. Roy: A Permutation Model for the Self-
Supervised Stereo Matching Problem . 2022 19th Conference on Robots and
Vision (CRV) 2022.
316
PASMnet
code
5.41 %
16.36 %
7.23 %
100.00 %
0.5 s
GPU @ 2.5 Ghz (Python)
L. Wang, Y. Guo, Y. Wang, Z. Liang, Z. Lin, J. Yang and W. An: Parallax Attention for
Unsupervised
Stereo Correspondence Learning . IEEE Transactions on Pattern
Analysis and Machine Intelligence(T-PAMI) 2020.
317
AAFS
6.27 %
13.95 %
7.54 %
100.00 %
0.01 s
1 core @ 2.5 Ghz (C/C++)
J. Chang, P. Chang and Y. Chen: Attention-Aware Feature Aggregation for
Real-time Stereo Matching on Edge Devices . Proceedings of the Asian Conference
on Computer Vision 2020.
318
Z2ZNCC
code
6.55 %
13.19 %
7.65 %
99.93 %
0.035s
Jetson TX2 GPU @ 1.0 Ghz (CUDA)
Q. Chang, A. Zha, W. Wang, X. Liu, M. Onishi, L. Lei, M. Er and T. Maruyama: Efficient stereo matching on embedded
GPUs with zero-means cross correlation . Journal of Systems Architecture 2022.
319
ReS2tAC
6.27 %
16.07 %
7.90 %
86.03 %
0.06 s
Jetson AGX GPU @ 1.5 Ghz (C/C++)
B. Ruf, J. Mohrs, M. Weinmann, S. Hinz and J. Beyerer: ReS2tAC - UAV-Borne Real-Time
SGM Stereo Optimized for Embedded ARM and
CUDA Devices . Sensors 2021.
320
Self-SuperFlow
5.78 %
19.76 %
8.11 %
100.00 %
0.13 s
GTX 1080 Ti
K. Bendig, R. Schuster and D. Stricker: Self-SuperFlow: Self-supervised Scene Flow Prediction in
Stereo Sequences . International Conference on Image Processing (ICIP) 2022.
321
CSCT+SGM+MF
6.91 %
14.87 %
8.24 %
100.00 %
0.0064 s
Nvidia GTX Titan X @ 1.0 Ghz (CUDA)
D. Hernandez-Juarez, A. Chacon, A. Espinosa, D. Vazquez, J. Moure and A. Lopez: Embedded real-time stereo estimation via Semi-Global Matching on the GPU . Procedia Computer Science 2016.
322
MBMGPU
6.61 %
16.70 %
8.29 %
100.00 %
0.0019 s
GPU @ 1.0 Ghz (CUDA)
Q. Chang and T. Maruyama: Real-Time Stereo Vision System:
A Multi-Block Matching on GPU . IEEE Access 2018.
323
MeshStereo
code
5.82 %
21.21 %
8.38 %
100.00 %
87 s
1 core @ 2.5 Ghz (C/C++)
C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao and Y. Rui: MeshStereo: A Global Stereo Model With
Mesh Alignment Regularization for View
Interpolation . The IEEE International Conference on
Computer Vision (ICCV) 2015.
324
PCOF + ACTF
6.31 %
19.24 %
8.46 %
100.00 %
0.08 s
GPU @ 2.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo . German Conference on Pattern Recognition 2016.
325
PCOF-LDOF
6.31 %
19.24 %
8.46 %
100.00 %
50 s
1 core @ 3.0 Ghz (C/C++)
M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais: A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo . German Conference on Pattern Recognition 2016.
326
OASM-Net
6.89 %
19.42 %
8.98 %
100.00 %
0.73 s
GPU @ 2.5 Ghz (Python)
A. Li and Z. Yuan: Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning . Proceedings of the Asian Conference on Computer Vision, ACCV 2018.
327
StereoNet_unsup
7.31 %
17.77 %
9.05 %
99.96 %
0.02 s
GPU @ 2.5 Ghz (Python)
328
CFNet_Sup
7.22 %
18.54 %
9.11 %
100.00 %
0.05 s
GPU @ 2.5 Ghz (Python)
329
SGM-DMB
7.96 %
16.68 %
9.41 %
99.98 %
10 s
GPU @ 2.5 Ghz (Python)
330
ELAS_RVC
code
7.38 %
21.15 %
9.67 %
100.00 %
0.19 s
4 cores @ >3.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching . ACCV 2010.
331
EMR-MSF
8.61 %
15.15 %
9.70 %
100.00 %
0.25 s
GPU @ 2.5 Ghz (Python)
Z. Jiang and M. Okutomi: EMR-MSF: Self-Supervised Recurrent
Monocular Scene Flow Exploiting Ego-Motion
Rigidity . Proceedings of the IEEE/CVF
International Conference on Computer Vision 2023.
332
ELAS
code
7.86 %
19.04 %
9.72 %
92.35 %
0.3 s
1 core @ 2.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching . ACCV 2010.
333
REAF
code
8.43 %
18.51 %
10.11 %
100.00 %
1.1 s
1 core @ 2.5 Ghz (C/C++)
C. Cigla: Recursive Edge-Aware Filters for Stereo Matching . The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2015.
334
iGF
8.64 %
21.85 %
10.84 %
100.00 %
220 s
1 core @ 3.0 Ghz (C/C++)
R. Hamzah, H. Ibrahim and A. Hassan: Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation . Journal of Visual Communication and Image Representation 2016.
335
OCV-SGBM
code
8.92 %
20.59 %
10.86 %
90.41 %
1.1 s
1 core @ 2.5 Ghz (C/C++)
H. Hirschmueller: Stereo processing by semiglobal matching
and mutual information . PAMI 2008.
336
SGM
code
8.95 %
20.55 %
10.88 %
99.77 %
10 s
1 core @ 2.5 Ghz (Python)
337
TW-SMNet
11.92 %
12.16 %
11.96 %
100.00 %
0.7 s
GPU @ 2.5 Ghz (Python)
M. El-Khamy, H. Ren, X. Du and J. Lee: TW-SMNet: Deep Multitask Learning of Tele-Wide Stereo Matching . arXiv:1906.04463 2019.
338
SDM
9.41 %
24.75 %
11.96 %
62.56 %
1 min
1 core @ 2.5 Ghz (C/C++)
J. Kostkova: Stratified dense matching for stereopsis
in complex scenes . BMVC 2003.
339
SGM&FlowFie+
11.93 %
20.57 %
13.37 %
81.24 %
29 s
1 core @ 3.5 Ghz (C/C++)
R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker: Combining Stereo Disparity and Optical Flow for Basic Scene Flow . Commercial Vehicle Technology Symposium (CVTS) 2018.
340
GCSF
code
11.64 %
27.11 %
14.21 %
100.00 %
2.4 s
1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by growing Correspondence Seeds . CVPR 2011.
341
3DG-DVO
12.94 %
26.10 %
15.13 %
100.00 %
0.04 s
GPU @ 1.5 Ghz (Python)
342
MT-TW-SMNet
15.47 %
16.25 %
15.60 %
100.00 %
0.4s
GPU @ 2.5 Ghz (Python)
M. El-Khamy, X. Du, H. Ren and J. Lee: Multi-Task Learning of Depth from Tele and Wide Stereo Image Pairs . Proceedings of the IEEE Conference on Image Processing 2019.
343
Mono-SF
14.21 %
26.94 %
16.32 %
100.00 %
41 s
1 core @ 3.5 Ghz (Matlab + C/C++)
F. Brickwedde, S. Abraham and R. Mester: Mono-SF: Multi-View Geometry meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes . Proc. of International Conference on Computer Vision (ICCV) 2019.
344
CostFilter
code
17.53 %
22.88 %
18.42 %
100.00 %
4 min
1 core @ 2.5 Ghz (Matlab)
C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual
Correspondence and Beyond . CVPR 2011.
345
MonoComb
17.89 %
21.16 %
18.44 %
100.00 %
0.58 s
RTX 2080 Ti
R. Schuster, C. Unger and D. Stricker: MonoComb: A Sparse-to-Dense Combination Approach for Monocular Scene Flow . ACM Computer Science in Cars Symposium (CSCS) 2020.
346
DWBSF
19.61 %
22.69 %
20.12 %
100.00 %
7 min
4 cores @ 3.5 Ghz (C/C++)
C. Richardt, H. Kim, L. Valgaerts and C. Theobalt: Dense Wide-Baseline Scene Flow
From Two Handheld Video Cameras . 3DV 2016.
347
monoResMatch
code
22.10 %
19.81 %
21.72 %
100.00 %
0.16 s
Titan X GPU
F. Tosi, F. Aleotti, M. Poggi and S. Mattoccia: Learning monocular depth estimation
infusing traditional stereo knowledge . The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2019.
348
Self-Mono-SF-ft
code
20.72 %
29.41 %
22.16 %
100.00 %
0.09 s
NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene
Flow Estimation . CVPR 2020.
349
Multi-Mono-SF-ft
code
21.60 %
28.22 %
22.71 %
100.00 %
0.06 s
NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Multi-Frame
Monocular Scene Flow . CVPR 2021.
350
OCV-BM
code
24.29 %
30.13 %
25.27 %
58.54 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
G. Bradski: The OpenCV Library . Dr. Dobb's Journal of Software Tools 2000.
351
VSF
code
27.31 %
21.72 %
26.38 %
100.00 %
125 min
1 core @ 2.5 Ghz (C/C++)
F. Huguet and F. Devernay: A Variational Method for Scene Flow Estimation from Stereo Sequences . ICCV 2007.
352
SED
code
25.01 %
40.43 %
27.58 %
4.02 %
0.68 s
1 core @ 2.0 Ghz (C/C++)
D. Pe\~{n}a and A. Sutherland: Disparity Estimation by Simultaneous Edge Drawing . Computer Vision -- ACCV 2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II 2017.
353
Multi-Mono-SF
code
27.48 %
47.30 %
30.78 %
100.00 %
0.06 s
NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Multi-Frame
Monocular Scene Flow . CVPR 2021.
354
mts1
code
28.03 %
46.55 %
31.11 %
2.52 %
0.18 s
4 cores @ 3.5 Ghz (C/C++)
R. Brandt, N. Strisciuglio, N. Petkov and M. Wilkinson: Efficient binocular stereo
correspondence matching with 1-D Max-Trees . Pattern Recognition Letters 2020.
355
Self-Mono-SF
code
31.22 %
48.04 %
34.02 %
100.00 %
0.09 s
NVIDIA GTX 1080 Ti
J. Hur and S. Roth: Self-Supervised Monocular Scene
Flow Estimation . CVPR 2020.
356
MST
code
45.83 %
38.22 %
44.57 %
100.00 %
7 s
1 core @ 2.5 Ghz (Matlab + C/C++)
Q. Yang: A Non-Local Cost Aggregation Method
for Stereo Matching . CVPR 2012.
357
Stereo-RSSF
code
56.60 %
73.05 %
59.34 %
9.26 %
2.5 s
8 core @ 2.5 Ghz (Matlab)
E. Salehi, A. Aghagolzadeh and R. Hosseini: Stereo-RSSF: stereo robust sparse scene-flow estimation . The Visual Computer 2023.