From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics. 
| 
  
    | Benchmark | HOTA | DetA | AssA | DetRe | DetPr | AssRe | AssPr | LocA |  
    | CAR | 73.58 % | 73.18 % | 74.66 % | 76.18 % | 86.81 % | 77.31 % | 89.55 % | 87.37 % |  
    | PEDESTRIAN | 42.77 % | 39.54 % | 46.54 % | 41.97 % | 71.91 % | 50.86 % | 71.26 % | 77.93 % |  
  
    | Benchmark | TP | FP | FN |  
    | CAR | 29750 | 4642 | 430 |  
    | PEDESTRIAN | 12714 | 10436 | 798 |  
  
    | Benchmark | MOTA | MOTP | MODA | IDSW | sMOTA |  
    | CAR | 84.32 % | 86.06 % | 85.25 % | 322 | 72.26 % |  
    | PEDESTRIAN | 50.08 % | 73.84 % | 51.47 % | 323 | 35.71 % |  
  
    | Benchmark | MT rate | PT rate | ML rate | FRAG |  
    | CAR | 69.85 % | 26.31 % | 3.85 % | 522 |  
    | PEDESTRIAN | 24.05 % | 46.73 % | 29.21 % | 1049 |  
  This table as LaTeX
    | Benchmark | # Dets | # Tracks |  
    | CAR | 30180 | 854 |  
    | PEDESTRIAN | 13512 | 374 |  
 
 | 
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe: 
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.