Method

RobMOT_v2 [RobMOT_v2]
[Anonymous Submission]

Submitted on 27 Jun. 2024 15:55 by
[Anonymous Submission]

Running time:1 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
RobMOT_v2
Parameters:
RobMOT_v2
Latex Bibtex:
RobMOT_v2

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 91.17 % 86.57 % 91.23 % 89.33 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 95.68 % 96.66 % 96.17 % 37858 1307 1710 11.75 % 44448 660

Benchmark MT PT ML IDS FRAG
CAR 83.54 % 6.31 % 10.15 % 19 64

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker