From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.56 % |
87.19 % |
85.72 % |
89.85 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.43 % |
93.24 % |
93.83 % |
37340 |
2709 |
2201 |
24.35 % |
47148 |
1350 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
83.38 % |
14.77 % |
1.85 % |
57 |
622 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.