Method

SST [st] [SST [st]]
[Anonymous Submission]

Submitted on 29 Dec. 2023 07:25 by
[Anonymous Submission]

Running time:1 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
we propose a 3D multi-object tracking system based
on stereo cameras.
Parameters:
\alpha=0.4
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 67.38 % 83.98 % 67.42 % 87.66 %
PEDESTRIAN 17.71 % 65.22 % 18.19 % 92.02 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 72.65 % 96.05 % 82.73 % 26837 1104 10101 9.92 % 28923 851
PEDESTRIAN 31.87 % 71.09 % 44.01 % 7445 3027 15913 27.21 % 10863 401

Benchmark MT PT ML IDS FRAG
CAR 43.08 % 36.77 % 20.15 % 13 212
PEDESTRIAN 9.97 % 23.02 % 67.01 % 110 674

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker