Method

Laser_Points_image_GPS_Online_PMTrack [PMTrack]
[Anonymous Submission]

Submitted on 8 Apr. 2024 03:32 by
[Anonymous Submission]

Running time:0.02 s
Environment:1 core @ 2.5 Ghz (Python)

Method Description:
A 3D multi-target tracking based on parallel multimodal data association. It'a a TBD.
The detector uses virconv
Parameters:
TBD
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 91.16 % 86.87 % 91.27 % 89.55 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 94.30 % 98.02 % 96.12 % 37218 753 2251 6.77 % 42857 716

Benchmark MT PT ML IDS FRAG
CAR 87.38 % 6.00 % 6.62 % 35 89

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker