From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.05 % |
85.71 % |
91.30 % |
88.42 % |
PEDESTRIAN |
65.52 % |
74.69 % |
66.25 % |
92.25 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
93.28 % |
99.00 % |
96.06 % |
36446 |
368 |
2624 |
3.31 % |
44115 |
820 |
PEDESTRIAN |
72.73 % |
92.16 % |
81.30 % |
16986 |
1444 |
6369 |
12.98 % |
21796 |
312 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
80.15 % |
15.85 % |
4.00 % |
85 |
151 |
PEDESTRIAN |
40.55 % |
37.46 % |
21.99 % |
170 |
674 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.