From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
61.52 % |
76.66 % |
62.23 % |
81.01 % |
PEDESTRIAN |
37.48 % |
69.41 % |
39.10 % |
90.45 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
79.62 % |
85.75 % |
82.58 % |
30780 |
5113 |
7877 |
45.96 % |
47510 |
989 |
PEDESTRIAN |
65.80 % |
71.60 % |
68.58 % |
15385 |
6103 |
7995 |
54.86 % |
27345 |
417 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
59.54 % |
34.46 % |
6.00 % |
244 |
849 |
PEDESTRIAN |
36.08 % |
45.02 % |
18.90 % |
376 |
1271 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.