Method

HybridTrack: A Hybrid Approach for Robust Multi-Object Tracking [HybridTrack]
[Anonymous Submission]

Submitted on 4 Dec. 2024 13:44 by
[Anonymous Submission]

Running time:0.01 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
Tracking-by-detection paradigm.
Parameters:
Virconv detections
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 91.06 % 86.86 % 91.16 % 89.56 %
PEDESTRIAN 39.57 % 64.66 % 40.40 % 91.23 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 93.62 % 98.60 % 96.04 % 36912 525 2516 4.72 % 42233 680
PEDESTRIAN 48.09 % 86.71 % 61.87 % 11193 1716 12081 15.43 % 13540 274

Benchmark MT PT ML IDS FRAG
CAR 85.38 % 6.31 % 8.31 % 32 97
PEDESTRIAN 21.99 % 29.21 % 48.80 % 192 882

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker