Method

DetNosNa [DFR]
[Anonymous Submission]

Submitted on 21 May. 2024 11:04 by
[Anonymous Submission]

Running time:0.01 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
Anonymous
Parameters:
Anonymous
Latex Bibtex:
Anonymous

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 90.98 % 86.55 % 91.04 % 89.30 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 95.69 % 96.49 % 96.09 % 37865 1376 1707 12.37 % 44542 662

Benchmark MT PT ML IDS FRAG
CAR 83.85 % 6.15 % 10.00 % 18 66

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker