From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
67.00 % |
79.60 % |
85.10 % |
81.50 % |
88.30 % |
PEDESTRIAN |
47.30 % |
66.10 % |
74.60 % |
68.40 % |
91.80 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
85.10 % |
96.00 % |
90.20 % |
31281 |
1310 |
5479 |
11.80 % |
42100 |
843 |
PEDESTRIAN |
74.10 % |
92.90 % |
82.40 % |
15334 |
1179 |
5363 |
10.60 % |
19711 |
416 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
74.90 % |
22.80 % |
2.30 % |
692 |
1058 |
PEDESTRIAN |
45.60 % |
41.10 % |
13.30 % |
481 |
861 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.