From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
77.20 % |
87.70 % |
88.40 % |
88.90 % |
90.90 % |
PEDESTRIAN |
65.00 % |
79.60 % |
82.30 % |
81.10 % |
94.00 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.80 % |
97.90 % |
94.20 % |
33394 |
725 |
3366 |
6.50 % |
47952 |
1420 |
PEDESTRIAN |
82.80 % |
98.00 % |
89.70 % |
17130 |
349 |
3567 |
3.10 % |
22798 |
675 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
82.00 % |
17.30 % |
0.80 % |
415 |
706 |
PEDESTRIAN |
57.80 % |
35.90 % |
6.30 % |
300 |
520 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.