From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
0.00 % |
0.00 % |
0.00 % |
0.00 % |
0.00 % |
PEDESTRIAN |
61.50 % |
76.50 % |
81.00 % |
77.40 % |
93.80 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
0.00 % |
0.00 % |
0.00 % |
0 |
0 |
0 |
0.00 % |
0 |
0 |
PEDESTRIAN |
79.00 % |
97.90 % |
87.50 % |
16356 |
344 |
4341 |
3.10 % |
20047 |
243 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
0.00 % |
0.00 % |
0.00 % |
0 |
0 |
PEDESTRIAN |
48.90 % |
41.90 % |
9.30 % |
176 |
632 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.