From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
74.80 % |
86.80 % |
86.80 % |
88.50 % |
89.70 % |
PEDESTRIAN |
60.60 % |
78.90 % |
78.20 % |
80.80 % |
93.00 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.90 % |
97.40 % |
94.00 % |
33407 |
886 |
3353 |
8.00 % |
45994 |
1299 |
PEDESTRIAN |
83.80 % |
96.50 % |
89.70 % |
17350 |
637 |
3347 |
5.70 % |
25145 |
728 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
80.00 % |
18.50 % |
1.50 % |
614 |
983 |
PEDESTRIAN |
60.40 % |
35.20 % |
4.40 % |
390 |
714 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.