From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
75.40 % |
86.70 % |
87.50 % |
88.20 % |
90.10 % |
PEDESTRIAN |
62.80 % |
78.20 % |
81.60 % |
80.50 % |
93.70 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.80 % |
97.20 % |
93.90 % |
33387 |
964 |
3373 |
8.70 % |
49145 |
574 |
PEDESTRIAN |
83.20 % |
96.80 % |
89.50 % |
17223 |
570 |
3474 |
5.10 % |
23551 |
357 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
82.00 % |
17.40 % |
0.60 % |
549 |
874 |
PEDESTRIAN |
59.30 % |
35.90 % |
4.80 % |
474 |
696 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.