From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
| 
  
    | Benchmark | sMOTSA | MOTSA | MOTSP | MODSA | MODSP |  
    | CAR | 78.00 % | 90.40 % | 87.20 % | 91.80 % | 89.70 % |  
    | PEDESTRIAN | 61.00 % | 75.70 % | 81.30 % | 76.90 % | 93.80 % |  
  
    | Benchmark | recall | precision | F1 | TP | FP | FN | FAR | #objects | #trajectories |  
    | CAR | 96.10 % | 95.80 % | 95.90 % | 35317 | 1558 | 1443 | 14.00 % | 52899 | 1174 |  
    | PEDESTRIAN | 78.70 % | 97.80 % | 87.20 % | 16280 | 371 | 4417 | 3.30 % | 19981 | 708 |  
  This table as LaTeX
    | Benchmark | MT | PT | ML | IDS | FRAG |  
    | CAR | 91.30 % | 8.00 % | 0.80 % | 542 | 832 |  
    | PEDESTRIAN | 53.00 % | 38.50 % | 8.50 % | 233 | 707 |  
 
 | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.