From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
78.00 % |
90.40 % |
87.20 % |
91.80 % |
89.70 % |
PEDESTRIAN |
61.00 % |
75.70 % |
81.30 % |
76.90 % |
93.80 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
96.10 % |
95.80 % |
95.90 % |
35317 |
1558 |
1443 |
14.00 % |
52899 |
1174 |
PEDESTRIAN |
78.70 % |
97.80 % |
87.20 % |
16280 |
371 |
4417 |
3.30 % |
19981 |
708 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
91.30 % |
8.00 % |
0.80 % |
542 |
832 |
PEDESTRIAN |
53.00 % |
38.50 % |
8.50 % |
233 |
707 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.