From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. 
The tables below show all of these metrics. 
| 
  
    | Benchmark | sMOTSA | MOTSA | MOTSP | MODSA | MODSP |  
    | CAR | 66.20 % | 81.10 % | 82.80 % | 82.90 % | 86.30 % |  
    | PEDESTRIAN | 42.60 % | 57.70 % | 75.60 % | 59.60 % | 92.60 % |  
  
    | Benchmark | recall | precision | F1 | TP | FP | FN | FAR | #objects | #trajectories |  
    | CAR | 86.50 % | 96.00 % | 91.00 % | 31790 | 1314 | 4970 | 11.80 % | 39736 | 1400 |  
    | PEDESTRIAN | 61.80 % | 96.50 % | 75.40 % | 12799 | 458 | 7898 | 4.10 % | 13988 | 424 |  
  This table as LaTeX
    | Benchmark | MT | PT | ML | IDS | FRAG |  
    | CAR | 71.90 % | 26.10 % | 2.00 % | 676 | 1093 |  
    | PEDESTRIAN | 27.80 % | 53.70 % | 18.50 % | 408 | 780 |  
 
 | 
[1] K. Bernardin, R. Stiefelhagen: 
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: 
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.