From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
66.20 % |
81.10 % |
82.80 % |
82.90 % |
86.30 % |
PEDESTRIAN |
42.60 % |
57.70 % |
75.60 % |
59.60 % |
92.60 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
86.50 % |
96.00 % |
91.00 % |
31790 |
1314 |
4970 |
11.80 % |
39736 |
1400 |
PEDESTRIAN |
61.80 % |
96.50 % |
75.40 % |
12799 |
458 |
7898 |
4.10 % |
13988 |
424 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
71.90 % |
26.10 % |
2.00 % |
676 |
1093 |
PEDESTRIAN |
27.80 % |
53.70 % |
18.50 % |
408 |
780 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.