From all 29 test sequences, our benchmark computes the commonly used tracking metrics (adapted for the segmentation case): CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
sMOTSA |
MOTSA |
MOTSP |
MODSA |
MODSP |
CAR |
81.00 % |
90.70 % |
89.90 % |
91.80 % |
92.20 % |
PEDESTRIAN |
68.70 % |
84.50 % |
82.30 % |
85.50 % |
93.90 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
95.90 % |
95.90 % |
95.90 % |
35237 |
1498 |
1523 |
13.50 % |
54397 |
1250 |
PEDESTRIAN |
89.00 % |
96.20 % |
92.50 % |
18426 |
737 |
2271 |
6.60 % |
27830 |
671 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
92.20 % |
7.20 % |
0.60 % |
392 |
580 |
PEDESTRIAN |
73.30 % |
24.10 % |
2.60 % |
209 |
443 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.