From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
72.08 % |
71.02 % |
73.84 % |
75.59 % |
83.52 % |
77.75 % |
86.41 % |
86.04 % |
PEDESTRIAN |
51.46 % |
45.59 % |
58.39 % |
50.18 % |
68.98 % |
63.35 % |
72.93 % |
77.86 % |
Benchmark |
TP |
FP |
FN |
CAR |
30007 |
4385 |
1121 |
PEDESTRIAN |
15082 |
8068 |
1759 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
83.19 % |
84.39 % |
83.99 % |
275 |
69.57 % |
PEDESTRIAN |
56.84 % |
73.74 % |
57.55 % |
164 |
39.73 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
70.92 % |
23.69 % |
5.38 % |
421 |
PEDESTRIAN |
33.68 % |
31.27 % |
35.05 % |
659 |
Benchmark |
# Dets |
# Tracks |
CAR |
31128 |
789 |
PEDESTRIAN |
16841 |
304 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.