From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
71.55 % |
72.62 % |
71.11 % |
76.78 % |
83.84 % |
74.51 % |
86.26 % |
85.72 % |
PEDESTRIAN |
45.88 % |
44.66 % |
47.62 % |
47.92 % |
69.51 % |
52.04 % |
69.88 % |
76.43 % |
Benchmark |
TP |
FP |
FN |
CAR |
30736 |
3656 |
759 |
PEDESTRIAN |
14772 |
8378 |
1189 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
86.31 % |
84.05 % |
87.16 % |
292 |
72.06 % |
PEDESTRIAN |
57.61 % |
71.73 % |
58.67 % |
246 |
39.57 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
71.08 % |
22.00 % |
6.92 % |
220 |
PEDESTRIAN |
30.58 % |
44.33 % |
25.09 % |
651 |
Benchmark |
# Dets |
# Tracks |
CAR |
31495 |
793 |
PEDESTRIAN |
15961 |
336 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.