From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
76.54 % |
77.25 % |
76.39 % |
80.64 % |
86.36 % |
80.33 % |
87.17 % |
87.01 % |
PEDESTRIAN |
54.69 % |
50.82 % |
59.08 % |
55.68 % |
70.94 % |
64.09 % |
73.36 % |
78.52 % |
Benchmark |
TP |
FP |
FN |
CAR |
31707 |
2685 |
407 |
PEDESTRIAN |
16728 |
6422 |
1443 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
90.28 % |
85.53 % |
91.01 % |
250 |
76.95 % |
PEDESTRIAN |
65.14 % |
74.53 % |
66.03 % |
204 |
46.74 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
80.00 % |
16.92 % |
3.08 % |
280 |
PEDESTRIAN |
44.33 % |
35.74 % |
19.93 % |
609 |
Benchmark |
# Dets |
# Tracks |
CAR |
32114 |
705 |
PEDESTRIAN |
18171 |
291 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.