From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
75.19 % |
75.55 % |
75.36 % |
78.77 % |
86.04 % |
78.34 % |
88.24 % |
86.59 % |
PEDESTRIAN |
42.73 % |
44.71 % |
41.15 % |
50.24 % |
67.27 % |
46.55 % |
64.60 % |
78.30 % |
Benchmark |
TP |
FP |
FN |
CAR |
31150 |
3242 |
334 |
PEDESTRIAN |
15214 |
7936 |
2076 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
89.09 % |
85.03 % |
89.60 % |
176 |
75.53 % |
PEDESTRIAN |
55.45 % |
74.22 % |
56.75 % |
302 |
38.51 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
78.15 % |
17.54 % |
4.31 % |
305 |
PEDESTRIAN |
33.33 % |
40.55 % |
26.12 % |
732 |
Benchmark |
# Dets |
# Tracks |
CAR |
31484 |
763 |
PEDESTRIAN |
17290 |
427 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.