From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
69.61 % |
73.05 % |
66.89 % |
76.95 % |
85.07 % |
69.18 % |
88.95 % |
86.72 % |
PEDESTRIAN |
34.24 % |
38.79 % |
30.55 % |
42.51 % |
66.64 % |
32.69 % |
70.12 % |
76.64 % |
Benchmark |
TP |
FP |
FN |
CAR |
30325 |
4067 |
787 |
PEDESTRIAN |
12943 |
10207 |
1822 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
85.10 % |
85.28 % |
85.89 % |
271 |
72.11 % |
PEDESTRIAN |
45.31 % |
72.22 % |
48.04 % |
631 |
29.78 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
70.92 % |
24.46 % |
4.62 % |
273 |
PEDESTRIAN |
24.40 % |
46.05 % |
29.55 % |
849 |
Benchmark |
# Dets |
# Tracks |
CAR |
31112 |
960 |
PEDESTRIAN |
14765 |
750 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.