From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
64.77 % |
63.08 % |
67.04 % |
66.92 % |
79.28 % |
70.38 % |
83.14 % |
82.22 % |
PEDESTRIAN |
40.91 % |
37.52 % |
44.79 % |
40.94 % |
65.86 % |
50.53 % |
65.94 % |
75.94 % |
Benchmark |
TP |
FP |
FN |
CAR |
27968 |
6424 |
1064 |
PEDESTRIAN |
12717 |
10433 |
1676 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
77.91 % |
79.84 % |
78.23 % |
108 |
61.52 % |
PEDESTRIAN |
47.08 % |
71.21 % |
47.69 % |
141 |
31.27 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
58.46 % |
27.54 % |
14.00 % |
143 |
PEDESTRIAN |
27.84 % |
37.46 % |
34.71 % |
512 |
Benchmark |
# Dets |
# Tracks |
CAR |
29032 |
666 |
PEDESTRIAN |
14393 |
279 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.