From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
72.66 % |
74.69 % |
71.43 % |
79.04 % |
85.59 % |
77.69 % |
85.86 % |
87.48 % |
PEDESTRIAN |
43.25 % |
42.03 % |
44.79 % |
44.85 % |
62.85 % |
51.24 % |
60.72 % |
71.87 % |
Benchmark |
TP |
FP |
FN |
CAR |
30884 |
3508 |
875 |
PEDESTRIAN |
14559 |
8591 |
1961 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
86.51 % |
86.07 % |
87.26 % |
257 |
74.00 % |
PEDESTRIAN |
53.55 % |
65.28 % |
54.42 % |
200 |
31.72 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
74.77 % |
20.46 % |
4.77 % |
496 |
PEDESTRIAN |
31.61 % |
40.21 % |
28.18 % |
1311 |
Benchmark |
# Dets |
# Tracks |
CAR |
31759 |
868 |
PEDESTRIAN |
16520 |
312 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.