From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
54.90 % |
60.57 % |
49.99 % |
64.13 % |
78.77 % |
51.98 % |
82.33 % |
81.87 % |
PEDESTRIAN |
33.93 % |
34.00 % |
34.07 % |
36.35 % |
67.44 % |
36.34 % |
70.76 % |
75.96 % |
Benchmark |
TP |
FP |
FN |
CAR |
27046 |
7346 |
955 |
PEDESTRIAN |
11329 |
11821 |
1149 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
74.44 % |
79.32 % |
75.86 % |
491 |
58.17 % |
PEDESTRIAN |
42.10 % |
71.15 % |
43.97 % |
433 |
27.99 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
50.46 % |
38.31 % |
11.23 % |
552 |
PEDESTRIAN |
14.09 % |
50.86 % |
35.05 % |
851 |
Benchmark |
# Dets |
# Tracks |
CAR |
28001 |
1105 |
PEDESTRIAN |
12478 |
623 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.