Method

Joint Homography and Interacting Tracking [JHIT]


Submitted on 25 Jul. 2024 07:42 by
Paul Claasen (University of Pretoria)

Running time:0.01 s
Environment:1 core @ 3.5 Ghz (Python)

Method Description:
By modelling the camera projection matrix as part
of track state vectors, JHIT removes the explicit
influence of camera motion compensation techniques
on predicted track position states which is
prevalent in previous approaches. Expanding upon
this, static and dynamic camera motion models are
combined through the use of an IMM filter. A
simple bounding box motion model is used to
predict bounding box positions to incorporate
image plane information. JHIT dynamically mixes
bounding-box-based BIoU scores with ground-plane-
based Mahalanobis distances in an IMM-like fashion
to perform association. Finally, JHIT makes use of
dynamic process and measurement noise estimation
techniques.
Parameters:
\sigma_x=14.843421875000002, \sigma_y=16.249625,
\alpha_1=0.83375, \alpha_2=0.5, d_{conf}=0.5,
d_{high}=0.29999999999999993, \Omega=100.0, b=0.0,
\alpha_3=0.9065624999999999, p_{I,I}=0.9,
p_{G,G}=0.9, p_{s,s}=0.71625, p_{d,d}=0.71625
Latex Bibtex:
@misc{claasen2024interactingmultiplemodelbasedjoin
t,
title={Interacting Multiple Model-based
Joint Homography Matrix and Multiple Object State
Estimation},
author={Paul Johannes Claasen and Johan
Pieter de Villiers},
year={2024},
eprint={2409.02562},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2409.02562},
}

Detailed Results

From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics. The tables below show all of these metrics.


Benchmark HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
CAR 79.21 % 76.76 % 82.29 % 81.63 % 84.62 % 85.94 % 88.19 % 86.91 %
PEDESTRIAN 54.07 % 51.63 % 56.88 % 57.54 % 69.47 % 61.87 % 71.95 % 78.38 %

Benchmark TP FP FN
CAR 32119 2273 1058
PEDESTRIAN 17247 5903 1927

Benchmark MOTA MOTP MODA IDSW sMOTA
CAR 89.80 % 85.37 % 90.31 % 177 76.14 %
PEDESTRIAN 64.95 % 74.38 % 66.18 % 284 45.86 %

Benchmark MT rate PT rate ML rate FRAG
CAR 83.54 % 12.77 % 3.69 % 98
PEDESTRIAN 44.67 % 35.74 % 19.59 % 469

Benchmark # Dets # Tracks
CAR 33177 688
PEDESTRIAN 19174 313

This table as LaTeX


This figure as: png pdf

This figure as: png pdf

[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe: HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker