From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
79.21 % |
76.76 % |
82.29 % |
81.63 % |
84.62 % |
85.94 % |
88.19 % |
86.91 % |
PEDESTRIAN |
54.07 % |
51.63 % |
56.88 % |
57.54 % |
69.47 % |
61.87 % |
71.95 % |
78.38 % |
Benchmark |
TP |
FP |
FN |
CAR |
32119 |
2273 |
1058 |
PEDESTRIAN |
17247 |
5903 |
1927 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
89.80 % |
85.37 % |
90.31 % |
177 |
76.14 % |
PEDESTRIAN |
64.95 % |
74.38 % |
66.18 % |
284 |
45.86 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
83.54 % |
12.77 % |
3.69 % |
98 |
PEDESTRIAN |
44.67 % |
35.74 % |
19.59 % |
469 |
Benchmark |
# Dets |
# Tracks |
CAR |
33177 |
688 |
PEDESTRIAN |
19174 |
313 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.