From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
72.28 % |
71.97 % |
73.08 % |
77.05 % |
83.77 % |
76.39 % |
88.66 % |
86.73 % |
PEDESTRIAN |
40.20 % |
35.59 % |
45.63 % |
38.35 % |
60.03 % |
48.98 % |
64.15 % |
71.25 % |
Benchmark |
TP |
FP |
FN |
CAR |
30446 |
3946 |
1185 |
PEDESTRIAN |
12357 |
10793 |
2431 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
84.77 % |
85.08 % |
85.08 % |
107 |
71.56 % |
PEDESTRIAN |
42.01 % |
64.57 % |
42.88 % |
201 |
23.09 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
70.92 % |
20.77 % |
8.31 % |
287 |
PEDESTRIAN |
21.99 % |
42.61 % |
35.40 % |
1134 |
Benchmark |
# Dets |
# Tracks |
CAR |
31631 |
804 |
PEDESTRIAN |
14788 |
340 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.