From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
73.19 % |
73.27 % |
73.77 % |
80.98 % |
81.67 % |
77.05 % |
89.84 % |
87.31 % |
PEDESTRIAN |
46.55 % |
46.82 % |
46.68 % |
53.01 % |
59.38 % |
50.84 % |
65.82 % |
72.07 % |
Benchmark |
TP |
FP |
FN |
CAR |
31629 |
2763 |
2472 |
PEDESTRIAN |
16990 |
6160 |
3679 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
84.21 % |
85.86 % |
84.78 % |
195 |
71.20 % |
PEDESTRIAN |
56.05 % |
65.68 % |
57.50 % |
335 |
30.86 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
75.85 % |
18.15 % |
6.00 % |
301 |
PEDESTRIAN |
44.33 % |
43.30 % |
12.37 % |
1432 |
Benchmark |
# Dets |
# Tracks |
CAR |
34101 |
1085 |
PEDESTRIAN |
20669 |
768 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.