From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
49.12 % |
62.44 % |
39.34 % |
67.58 % |
76.86 % |
40.72 % |
85.23 % |
81.47 % |
PEDESTRIAN |
14.08 % |
24.91 % |
8.15 % |
27.21 % |
52.62 % |
8.63 % |
59.39 % |
68.64 % |
Benchmark |
TP |
FP |
FN |
CAR |
28583 |
5809 |
1658 |
PEDESTRIAN |
8150 |
15000 |
3820 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
72.61 % |
78.49 % |
78.29 % |
1952 |
54.73 % |
PEDESTRIAN |
11.99 % |
62.31 % |
18.70 % |
1555 |
-1.28 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
56.92 % |
37.23 % |
5.85 % |
1103 |
PEDESTRIAN |
2.41 % |
59.11 % |
38.49 % |
1649 |
Benchmark |
# Dets |
# Tracks |
CAR |
30241 |
2450 |
PEDESTRIAN |
11970 |
1678 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.