From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
75.47 % |
74.10 % |
77.63 % |
78.86 % |
82.98 % |
80.23 % |
88.88 % |
85.48 % |
PEDESTRIAN |
42.87 % |
40.13 % |
46.31 % |
46.02 % |
59.91 % |
52.86 % |
63.50 % |
74.03 % |
Benchmark |
TP |
FP |
FN |
CAR |
31638 |
2754 |
1045 |
PEDESTRIAN |
14285 |
8865 |
3498 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
88.48 % |
83.70 % |
88.95 % |
162 |
73.49 % |
PEDESTRIAN |
45.44 % |
69.06 % |
46.60 % |
267 |
26.35 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
80.61 % |
15.23 % |
4.15 % |
153 |
PEDESTRIAN |
33.68 % |
39.86 % |
26.46 % |
655 |
Benchmark |
# Dets |
# Tracks |
CAR |
32683 |
868 |
PEDESTRIAN |
17783 |
460 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.