Method

Track Integrated Neural Networks [TINN]
[Anonymous Submission]

Submitted on 5 Apr. 2025 13:25 by
[Anonymous Submission]

Running time:0.01 s
Environment:2 cores @ 3.0 Ghz (Python)

Method Description:
to be
Parameters:
0.4
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics. The tables below show all of these metrics.


Benchmark HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
CAR 79.53 % 77.68 % 82.13 % 81.43 % 85.89 % 85.05 % 89.81 % 86.95 %
PEDESTRIAN 50.94 % 49.33 % 52.85 % 54.13 % 71.13 % 57.36 % 73.97 % 78.97 %

Benchmark TP FP FN
CAR 32040 2352 564
PEDESTRIAN 16097 7053 1520

Benchmark MOTA MOTP MODA IDSW sMOTA
CAR 90.65 % 85.50 % 91.52 % 300 77.14 %
PEDESTRIAN 60.69 % 75.23 % 62.97 % 527 43.47 %

Benchmark MT rate PT rate ML rate FRAG
CAR 86.46 % 11.08 % 2.46 % 242
PEDESTRIAN 43.30 % 39.86 % 16.84 % 759

Benchmark # Dets # Tracks
CAR 32604 1009
PEDESTRIAN 17617 772

This table as LaTeX


This figure as: png pdf

This figure as: png pdf

[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe: HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker