From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
56.09 % |
60.70 % |
52.15 % |
64.97 % |
77.83 % |
54.87 % |
81.17 % |
81.94 % |
PEDESTRIAN |
34.66 % |
34.31 % |
35.21 % |
36.70 % |
67.74 % |
38.33 % |
69.46 % |
76.23 % |
Benchmark |
TP |
FP |
FN |
CAR |
27399 |
6993 |
1310 |
PEDESTRIAN |
11398 |
11752 |
1144 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
74.92 % |
79.46 % |
75.86 % |
324 |
58.55 % |
PEDESTRIAN |
43.26 % |
71.57 % |
44.29 % |
239 |
29.26 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
53.69 % |
34.00 % |
12.31 % |
317 |
PEDESTRIAN |
17.87 % |
38.49 % |
43.64 % |
491 |
Benchmark |
# Dets |
# Tracks |
CAR |
28709 |
855 |
PEDESTRIAN |
12542 |
354 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.