From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
59.90 % |
57.19 % |
63.28 % |
60.64 % |
82.13 % |
66.26 % |
87.39 % |
85.65 % |
PEDESTRIAN |
28.65 % |
19.93 % |
41.29 % |
22.33 % |
50.36 % |
46.22 % |
58.52 % |
71.23 % |
Benchmark |
TP |
FP |
FN |
CAR |
24281 |
10111 |
1114 |
PEDESTRIAN |
7205 |
15945 |
3059 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
66.95 % |
83.86 % |
67.36 % |
143 |
55.55 % |
PEDESTRIAN |
17.30 % |
64.74 % |
17.91 % |
140 |
6.33 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
43.69 % |
36.15 % |
20.15 % |
207 |
PEDESTRIAN |
9.97 % |
23.02 % |
67.01 % |
700 |
Benchmark |
# Dets |
# Tracks |
CAR |
25395 |
805 |
PEDESTRIAN |
10264 |
388 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.