From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
68.45 % |
72.44 % |
65.49 % |
76.01 % |
85.37 % |
68.28 % |
88.53 % |
86.50 % |
PEDESTRIAN |
41.12 % |
44.81 % |
38.10 % |
48.55 % |
70.39 % |
41.02 % |
72.47 % |
77.87 % |
Benchmark |
TP |
FP |
FN |
CAR |
30072 |
4320 |
549 |
PEDESTRIAN |
14657 |
8493 |
1309 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
84.93 % |
84.85 % |
85.84 % |
313 |
71.69 % |
PEDESTRIAN |
55.55 % |
73.70 % |
57.66 % |
487 |
38.90 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
69.54 % |
26.61 % |
3.85 % |
567 |
PEDESTRIAN |
31.27 % |
48.45 % |
20.27 % |
951 |
Benchmark |
# Dets |
# Tracks |
CAR |
30621 |
979 |
PEDESTRIAN |
15966 |
702 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.