From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
78.03 % |
78.29 % |
78.41 % |
81.71 % |
86.54 % |
81.14 % |
89.49 % |
87.10 % |
PEDESTRIAN |
48.63 % |
52.28 % |
45.61 % |
57.40 % |
71.03 % |
49.63 % |
73.28 % |
78.57 % |
Benchmark |
TP |
FP |
FN |
CAR |
32072 |
2320 |
402 |
PEDESTRIAN |
17192 |
5958 |
1514 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
91.33 % |
85.65 % |
92.08 % |
258 |
77.95 % |
PEDESTRIAN |
65.98 % |
74.53 % |
67.72 % |
403 |
47.07 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
85.69 % |
11.69 % |
2.62 % |
250 |
PEDESTRIAN |
48.80 % |
35.40 % |
15.81 % |
646 |
Benchmark |
# Dets |
# Tracks |
CAR |
32474 |
901 |
PEDESTRIAN |
18706 |
672 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.