Method

\ [\]
[Anonymous Submission]

Submitted on 6 Aug. 2024 10:13 by
[Anonymous Submission]

Running time:0.01 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
\
Parameters:
\
Latex Bibtex:
\

Detailed Results

From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics. The tables below show all of these metrics.


Benchmark HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
CAR 65.14 % 64.64 % 66.38 % 72.51 % 73.25 % 69.65 % 83.33 % 81.50 %
PEDESTRIAN 51.26 % 49.71 % 53.25 % 58.58 % 62.11 % 58.65 % 70.14 % 75.79 %

Benchmark TP FP FN
CAR 30925 3467 3121
PEDESTRIAN 17840 5310 3993

Benchmark MOTA MOTP MODA IDSW sMOTA
CAR 80.22 % 78.95 % 80.84 % 213 61.30 %
PEDESTRIAN 58.40 % 71.18 % 59.81 % 328 36.19 %

Benchmark MT rate PT rate ML rate FRAG
CAR 73.85 % 22.92 % 3.23 % 324
PEDESTRIAN 52.92 % 36.77 % 10.31 % 1078

Benchmark # Dets # Tracks
CAR 34046 1280
PEDESTRIAN 21833 737

This table as LaTeX


This figure as: png pdf

This figure as: png pdf

[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe: HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker