From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
79.94 % |
77.36 % |
83.17 % |
80.69 % |
86.44 % |
86.14 % |
89.38 % |
86.97 % |
PEDESTRIAN |
55.65 % |
51.75 % |
60.08 % |
55.97 % |
72.26 % |
65.14 % |
73.89 % |
78.51 % |
Benchmark |
TP |
FP |
FN |
CAR |
31744 |
2648 |
362 |
PEDESTRIAN |
16750 |
6400 |
1180 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
91.06 % |
85.48 % |
91.25 % |
64 |
77.66 % |
PEDESTRIAN |
66.79 % |
74.56 % |
67.26 % |
108 |
48.38 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
79.54 % |
16.46 % |
4.00 % |
85 |
PEDESTRIAN |
40.21 % |
37.46 % |
22.34 % |
439 |
Benchmark |
# Dets |
# Tracks |
CAR |
32106 |
670 |
PEDESTRIAN |
17930 |
270 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.