From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
60.42 % |
54.92 % |
67.95 % |
63.13 % |
68.64 % |
72.40 % |
81.86 % |
78.93 % |
PEDESTRIAN |
44.41 % |
39.48 % |
50.51 % |
49.28 % |
53.91 % |
55.98 % |
66.97 % |
73.83 % |
Benchmark |
TP |
FP |
FN |
CAR |
26504 |
7888 |
5124 |
PEDESTRIAN |
15106 |
8044 |
6058 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
61.60 % |
75.93 % |
62.17 % |
193 |
43.05 % |
PEDESTRIAN |
37.81 % |
69.31 % |
39.08 % |
296 |
17.78 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
59.38 % |
34.15 % |
6.46 % |
820 |
PEDESTRIAN |
36.43 % |
44.33 % |
19.24 % |
1059 |
Benchmark |
# Dets |
# Tracks |
CAR |
31628 |
801 |
PEDESTRIAN |
21164 |
374 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.