From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
64.79 % |
63.04 % |
67.05 % |
66.18 % |
82.22 % |
69.61 % |
85.61 % |
84.24 % |
PEDESTRIAN |
42.76 % |
39.23 % |
47.13 % |
43.83 % |
63.02 % |
50.91 % |
71.04 % |
75.15 % |
Benchmark |
TP |
FP |
FN |
CAR |
27022 |
7370 |
661 |
PEDESTRIAN |
13600 |
9550 |
2502 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
76.08 % |
82.22 % |
76.65 % |
196 |
62.11 % |
PEDESTRIAN |
47.02 % |
70.17 % |
47.94 % |
213 |
29.50 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
51.54 % |
34.15 % |
14.31 % |
281 |
PEDESTRIAN |
25.77 % |
45.70 % |
28.52 % |
738 |
Benchmark |
# Dets |
# Tracks |
CAR |
27683 |
725 |
PEDESTRIAN |
16102 |
394 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.