From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
71.85 % |
69.61 % |
74.81 % |
81.19 % |
76.99 % |
78.57 % |
89.33 % |
87.30 % |
PEDESTRIAN |
44.30 % |
42.31 % |
46.75 % |
52.97 % |
52.43 % |
50.91 % |
65.83 % |
72.08 % |
Benchmark |
TP |
FP |
FN |
CAR |
31716 |
2676 |
4554 |
PEDESTRIAN |
16974 |
6176 |
6415 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
78.52 % |
85.84 % |
78.98 % |
159 |
65.46 % |
PEDESTRIAN |
44.18 % |
65.68 % |
45.61 % |
332 |
19.02 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
75.85 % |
18.31 % |
5.85 % |
271 |
PEDESTRIAN |
44.33 % |
42.61 % |
13.06 % |
1431 |
Benchmark |
# Dets |
# Tracks |
CAR |
36270 |
1519 |
PEDESTRIAN |
23389 |
1194 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.