From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
79.56 % |
77.27 % |
82.47 % |
80.59 % |
86.49 % |
85.22 % |
89.71 % |
87.08 % |
PEDESTRIAN |
53.63 % |
50.39 % |
57.33 % |
54.77 % |
71.76 % |
61.65 % |
74.33 % |
78.66 % |
Benchmark |
TP |
FP |
FN |
CAR |
31676 |
2716 |
371 |
PEDESTRIAN |
16392 |
6758 |
1278 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
90.56 % |
85.65 % |
91.02 % |
160 |
77.34 % |
PEDESTRIAN |
64.21 % |
74.72 % |
65.29 % |
249 |
46.31 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
82.77 % |
14.15 % |
3.08 % |
296 |
PEDESTRIAN |
41.58 % |
40.89 % |
17.53 % |
667 |
Benchmark |
# Dets |
# Tracks |
CAR |
32047 |
803 |
PEDESTRIAN |
17670 |
459 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.