From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
72.30 % |
74.69 % |
70.63 % |
80.02 % |
83.11 % |
73.58 % |
87.14 % |
86.14 % |
PEDESTRIAN |
39.40 % |
44.24 % |
35.45 % |
50.78 % |
64.58 % |
38.98 % |
69.80 % |
77.56 % |
Benchmark |
TP |
FP |
FN |
CAR |
31815 |
2577 |
1298 |
PEDESTRIAN |
15445 |
7705 |
2758 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
87.33 % |
84.49 % |
88.73 % |
481 |
72.98 % |
PEDESTRIAN |
52.10 % |
73.42 % |
54.80 % |
626 |
34.37 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
84.46 % |
13.38 % |
2.15 % |
237 |
PEDESTRIAN |
35.05 % |
46.05 % |
18.90 % |
669 |
Benchmark |
# Dets |
# Tracks |
CAR |
33113 |
1236 |
PEDESTRIAN |
18203 |
870 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.