From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
65.94 % |
65.37 % |
67.03 % |
68.49 % |
82.42 % |
71.02 % |
82.25 % |
84.03 % |
PEDESTRIAN |
39.44 % |
34.20 % |
45.79 % |
36.15 % |
69.39 % |
49.38 % |
69.00 % |
76.23 % |
Benchmark |
TP |
FP |
FN |
CAR |
28175 |
6217 |
405 |
PEDESTRIAN |
11174 |
11976 |
885 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
80.24 % |
81.85 % |
80.75 % |
173 |
65.38 % |
PEDESTRIAN |
43.42 % |
71.72 % |
44.45 % |
236 |
29.78 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
57.08 % |
35.08 % |
7.85 % |
700 |
PEDESTRIAN |
18.56 % |
47.08 % |
34.36 % |
975 |
Benchmark |
# Dets |
# Tracks |
CAR |
28580 |
653 |
PEDESTRIAN |
12059 |
245 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.