From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
77.97 % |
77.81 % |
78.80 % |
81.58 % |
85.88 % |
81.14 % |
90.27 % |
86.88 % |
PEDESTRIAN |
51.65 % |
52.29 % |
51.35 % |
57.90 % |
70.78 % |
55.04 % |
75.97 % |
79.01 % |
Benchmark |
TP |
FP |
FN |
CAR |
32137 |
2255 |
533 |
PEDESTRIAN |
17339 |
5811 |
1597 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
90.31 % |
85.41 % |
91.89 % |
545 |
76.67 % |
PEDESTRIAN |
64.34 % |
75.04 % |
68.00 % |
848 |
45.64 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
86.31 % |
11.38 % |
2.31 % |
271 |
PEDESTRIAN |
47.77 % |
38.14 % |
14.09 % |
676 |
Benchmark |
# Dets |
# Tracks |
CAR |
32670 |
1292 |
PEDESTRIAN |
18936 |
1085 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.