From all 29 test sequences, our benchmark computes the HOTA tracking metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [1] as well as the CLEARMOT, MT/PT/ML, identity switches, and fragmentation [2,3] metrics.
The tables below show all of these metrics.
Benchmark |
HOTA |
DetA |
AssA |
DetRe |
DetPr |
AssRe |
AssPr |
LocA |
CAR |
56.62 % |
61.02 % |
52.80 % |
65.32 % |
76.83 % |
55.61 % |
80.07 % |
80.92 % |
PEDESTRIAN |
33.74 % |
35.74 % |
32.03 % |
39.54 % |
63.11 % |
36.36 % |
63.24 % |
75.18 % |
Benchmark |
TP |
FP |
FN |
CAR |
27991 |
6401 |
1247 |
PEDESTRIAN |
12420 |
10730 |
2083 |
Benchmark |
MOTA |
MOTP |
MODA |
IDSW |
sMOTA |
CAR |
76.82 % |
78.00 % |
77.76 % |
325 |
58.91 % |
PEDESTRIAN |
43.42 % |
70.23 % |
44.65 % |
284 |
27.46 % |
Benchmark |
MT rate |
PT rate |
ML rate |
FRAG |
CAR |
57.69 % |
33.08 % |
9.23 % |
466 |
PEDESTRIAN |
21.99 % |
42.95 % |
35.05 % |
736 |
Benchmark |
# Dets |
# Tracks |
CAR |
29238 |
907 |
PEDESTRIAN |
14503 |
383 |
This table as LaTeX
|
[1] J. Luiten, A. Os̆ep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, B. Leibe:
HOTA: A Higher Order Metric for Evaluating Multi-object Tracking. IJCV 2020.
[2] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[3] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.